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Abstract. A community in a social network is a collection of unusually connected nodes. A variety of formal
definitions of community have been proposed, many of which are based on optimizing some measure of the relative
connectedness of a subgraph. Because exactly optimizing such measures leads to hard combinatorial problems, many
researchers have considered spectral methods that extract approximate optima from a few leading eigenvectors of
the graph Laplacian or some matrix associated with the graph. But while spectral methods have primarily been used
to detect disjoint community structures, communities in social networks are often overlapping.

In this paper, we describe a framework to generalize spectral methods to the problem of detecting a community
that encompasses a set of example nodes. Our approach is based on finding sparse vectors that approximately lie in
some target subspace. When the target space is an invariant subspace spanned by a few eigenvectors of some graph-
related matrix, our approach generalizes existing spectral methods, but we also describe how Krylov subspaces can
be used as an effective alternative to invariant subspaces. We illustrate the effectiveness of our approach on both real
data and synthetic benchmarks.

1. Introduction. When we meet an unfamiliar group at a party, we often ask how they
know each other. The usual answer is that the group is part of a larger community: college
friends, co-workers, researchers in the same area, etc. Without context, it makes no sense to
ask an individual for a single community that they belong to, but even small groups of people
are often have a unique community in common. Intuitively, members of the larger community
should be relatively close to all of the members of the example group. In this paper, we
review some ways in which we can precisely characterize what makes a good community,
and develop scalable algorithms that allow us to find a community from an example group
under many of these characterizations.

Finding communities is a standard problem in network analysis, and much of the enor-
mous literature on the subject has been devoted to mathematical characterizations of com-
munities; see, e.g. [10, 26]. Intuitively, a community is a group that is unusually tightly
connected. However, there are many possible characterizations of “unusually tight” con-
nectivity, and different characterizations are probably relevant in different settings. Most
characterizations involve the density of links or short paths within a community and sparsity
of links or short paths between communities. To give the two extreme examples, we might
seek to bisect a graph into two equal size communities in order to minimize the number of
links between them (a min cut problem), or we might week a set with the maximum possible
edge density (a maximum clique problem). Much recent work has emphasized modularity,
which can be interpreted either in terms of density of edges within communities or sparsity
between communities in comparison to a random graph model [23]. Different characteri-
zations are appropriate in different settings: for example, a characterization that implicitly
assumes communities are disjoint is probably inappropriate in social networks where over-
lapping communities are natural.

Minimizing cuts, maximizing edge density, and maximizing modularity all quickly lead
to hard combinatorial optimization problems. In each of these cases, though, there are con-
tinuous relaxations that can be solved or approximated relatively quickly. The key to these
methods is the observation that many interesting properties of subgraphs can be expressed in
terms of quadratic forms, and the problem of finding an optimal subgraph (or collection of
subgraphs) can be written as a constrained binary quadratic programming problem. Contin-
uous relaxations of these problems frequently lead to eigenvalue problems, and to spectral
approximation methods extract approximate communities from the structure of the first few
eigenvectors. Spectral methods are also motivated by characterizations of communities based
on the dynamics of random walks, which are well approximated using the first few eigenvec-
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tors of a (possibly scaled) transition matrix.
Spectral methods of clustering and community detection involve two choices: a choice

of subspaces that will serve as the basis of approximation, and a choice of methods to extract
structure from such spaces. In this paper, we propose novel choices both for the space and
the method used to mine the space for community structure. Specifically, motivated by work
on the dynamics of short random walks, we propose a subspace chosen by unconverged sub-
space iteration as an alternative to the invariant subspaces used in most spectral methods. We
also propose an `1-penalized quadratic programming approach to finding sparse approximate
indicator vectors from a given subspace. Our approach is based on standard methods from
the numerical linear algebra and optimization literature, and our algorithms scale well to very
large graphs.

In the next section, we review some existing spectral approaches to finding communities
in graphs. In Section 3, we describe our approach to finding overlapping communities via
`1 penalized quadratic programming. In Section 4, we describe a strategy for choosing sub-
spaces that contain good approximations of indicators for communities that include a given
set of example nodes, and in Section 6, we describe the performance of this strategy on a set
of test cases. Finally, we conclude in Section 7.

2. Spectral approaches to community detection. Consider an undirected graph G =
(V,E) with n nodes and m edges. Many graph-theoretic properties of G can be connected to
the linear-algebraic properties of the associated adjacency matrix A ∈ {0, 1}n×n. For graphs
in which there is a wide distribution of node degrees, it may be more useful to consider
the graph Laplacian L = D − A, the normalized Laplacian L̄ = I − D−1/2AD−1/2, the
normalized adjacency matrix Ā = D−1/2AD−1/2, or the transition matrix N = D−1A,
where D is the diagonal matrix of node degrees. In particular, spectral graph theory involves
connections between the eigenvalue decompositions of these matrices and graph properties
such as expansion or rapid mixing of random walks.

2.1. Spectra and quadratic forms. We think of a set of nodes V ′ ⊂ V as a community
if the subgraph G′ = (V ′, E′) is unusually tightly connected internally or unusually sparsely
connected to the rest of the graph. Suppose V ′ ⊂ V is a subset of nodes andG′ = (V ′, E′) is
the induced subgraph. We can express many measures of relative connectivity of G′ in terms
of quadratic forms, expressions of the form sTHs where s ∈ {0, 1}n is a binary indicator
vector for the subset V ′ andH ∈ Rn×n is a symmetric matrix. Let us write e for the vector of
all ones (the indicator vector for all of G), A ∈ {0, 1}n×n for the adjacency matrix, d = Ae
for the vector of node degrees, and D = diag(d) for a square matrix with node degrees on
the diagonal. In terms of these primitives, we can express the following properties of G and
G′ via quadratic forms:

Nodes in G = eT e

Nodes in G′ = sT s

Directed edges in G = eTAe = eTDe

Directed edges in G′ = sTAs

Directed edges from V ′ to V = sTDs

Directed edges from V ′ to V̄ ′ = sTLs = sT (D −A)s.

Now, consider random graphs on the same nodes V drawn from the configuration model,
in which we independently form m edges where the probability of an edge from i to j is
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didj/(2m
2). The expected adjacency matrix is then Ã = ddT

2m , and

Expected directed edges in subgraph = sT Ãs

Expected directed edges from V ′ to V = sTDs

Expected directed edges from V ′ to V̄ ′ = sT L̃s = sT (D − Ã)s.

If we define the modularity matrix B = A− Ã = L̃−L, then sTBs can be interpreted as the
edges in G′ in excess of the expected number in a random graph, or as the count of expected
edges cut between V ′ and V̄ ′ in a random graph in excess of the cut edges in G.

The properties of a quadratic form xTHx is intimately tied to the spectra of the corre-
sponding symmetric matrix H . For any symmetric matrix H , we can write the eigendecom-
position H = QΛQT where Q is an orthonormal matrix and Λ = diag(λ1, λ2, . . . , λn),
λ1 ≥ λ2 ≥ . . . ≥ λn. This allows us to write

sTHs =

n∑
j=1

s̃2
jλj ,

where s̃j = qTj s is the projection of s onto the jth eigenvector. The Rayleigh quotient
ρH(s) ≡ sTHs/sT s is a weighted average of the eigenvalues:

ρH(s) ≡ sTHs

sT s
=

n∑
j=1

wjλ
2
j , where wj = s̃j/‖s‖2.

Note that if ρH(s) is near to λ1, most of the weight in the average must be on eigenvalues
close to λ1; that is, s must form an acute angle with the invariant subspace associated with
the extreme eigenvalues. More precisely, if ρH(s) > λ1 − δ, then for any positive C,

(2.1)
∑

j:λj>λ1−Cδ

wj > 1− 1

C
.

Similarly, ρH(s) is bounded from below by the smallest eigenvalue of H; and if ρH(s) is
close to this bound, then s must be well approximated by a linear combination of the eigen-
vectors associated with the smallest eigenvalues.

By relating spectral properties to Rayleigh quotients, we can bound many measures of
“tightness” of a subgraph; and through (2.1), any subgraph that approaches these eigenvalue
bounds must be indicated by a vector that lies nearly in the span of a few dominant eigen-
vectors. For example, ρA(s) is the mean degree of G′, For example, ρL(s) is the number of
edges cut relative to the number of nodes in G′, and ρB(s) is the modularity relative to the
number of nodes inG′. Similarly, the generalized Rayleigh quotient ρL,D(s) = sTLs/sTDs
is the fraction of edges incident on V ′ that are in E′. Note that ρL,D(s) = ρL̄(D1/2s), so we
can bound this relative cut size in terms of the eigenvalues of the normalized Laplacian. Sim-
ilarly, the number of edges cut relative to the expected edge cut in the configuration model
is

ρL,B(s) =
sTLs

sTBs
=
sT (D −A)s

sT (D − Ã)
=

(D1/2s)T L̄(D1/2s)

(D1/2s)T (I − d̃d̃T )(D1/2s)
,

where d̃ = D−1/2d/
√

2m is a null vector of the normalized Laplacian L̄. Hence, for any non-
trivial subgraph, this relative cut size is bounded from below by the first nonzero eigenvalue
of the normalized Laplacian.
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2.2. Spectra and dynamics. The probability density for a random walk of length k on
G is given by the Markov chain

pk = Npk−1 = Nkp0,

where p0 is an initial density and N = AD−1 is the transition matrix. The stationary distri-
bution for this Markov chain is simply p∞ = d/(2m). The matrix N is a similarity transfor-
mation of the normalized adjacency Ā:

diag(p∞)−1/2N diag(p∞)1/2 = D−1/2AD−1/2 = Ā.

Symmetry of Ā corresponds to reversibility of the Markov chain. Because the chain is re-
versible, all the eigenvalues of N are real, and the eigenvectors of N are related to the eigen-
vectors of Ā by a simple scaling. Further, if Ā = QΛQT , we can write pk as

pk = D1/2QΛkQTD−1/2p0.

Convergence of the Markov chain is thus related to the spectrum of Ā. In particular, the rate
of convergence to the stationary distribution is typically expressed in terms of the spectral
gap between the unit eigenvalue of Ā and the eigenvalue with next-largest magnitude. When
the spectral gap is large, the Markov chain mixes rapidly, i.e. the distributions pk converge
very quickly to the stationary distribution.

The eigenvalues and vectors of Ā also give information about the intermediate asymp-
totics as the Markov chain converges to stationarity. For example, consider the case where
G is partitioned into communities, with only a few inter-community links and many intra-
community links. In this case, the Markov chain is nearly decoupled. According to the
Simon-Ando theory for nearly-decoupled Markov chains [15], there are two phases to the
dynamics of such a Markov chain: an initial transient phase associated with mixing within
communities, and a much longer phase associated with mixing between communities. After
the initial transient phase, the distribution is well approximated by a linear combination of
local stationary distributions associated with the communities in the completely decoupled
case. In spectral terms, the nearly-decoupled Markov chain has a cluster of eigenvalues near
one, and the invariant subspace spanned by the corresponding eigenvectors is nearly identical
to the invariant subspace spanned by the local stationary distributions from the decoupled
chain. The remaining eigenvalues are well separated from one, and are associated with the
much faster transient mixing phase.

In the scientific computing literature, spectral algorithms based on Simon-Ando theory
have been applied to lumped analysis of Markov chains, with applications such as the identi-
fication of meta-stable states of biomolecules [4, 11, 16, 31]. In more recent work, Meyer has
explicitly applied the theory to more general problems of data clustering [20]. The same intu-
ition underlies the community detection work of Capocci et al [2], where correlations among
eigenvectors for the transition matrix are used as the basis for community detection, though
these authors appear unaware of the Simon-Ando theory. Other authors have also used the
dynamics of random walks as the basis of community detection algorithm [1, 3, 25, 28, 33],
though typically without any explicit exploration of the dominant eigenvalues and eigenvec-
tors.

2.3. Spectral partitioning and clustering. Whether we want to optimize quadratic
forms or find subgraphs with rapid local mixing of random walks, the eigenvalues and eigen-
vectors of graph-related matrices appear to hold valuable information. Spectral methods of
partitioning and clustering try to mine this information from the dominant eigenvectors of
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a graph-related matrix such as the Laplacian L or the normalized Laplacian L̄. Spectral bi-
section may be the best known example of such an algorithm. In this method, we seek to
partition the nodes into equal size sets such that the number of cut edges is minimized. We
can write the problem exactly as

minimize s̃TLs̃ s.t. eT s̃ = 0, s̃ ∈
{

1

2
,−1

2

}n
.

Note that s̃ is now a sign indicator vector rather than a binary indicator vector, though we can
recover a binary indicator by adding e/2 to s̃. Every signed indicator has two-norm equal to
n/4, which suggests we relax to the following constrained quadratic programming problem
over real-valued vectors x:

(2.2) minimize xTLx s.t. eTx = 0, ‖x‖22 = n/4.

The solution to (2.2) minimizes the Rayleigh quotient ρL(x) = xTLx/xTx over vectors or-
thogonal to the constant vector e. Because e is itself a null vector for L, minimizing ρL(x)
subject to eTx = 0 is precisely the variational characterization for the smallest nonzero eigen-
pair of L. This smallest nonzero eigenvalue of L is then most 2/n times the smallest edge cut,
and the signs of the corresponding eigenvector, called the Fiedler vector, usually provide a
good partition [27]. Similarly, one can use the largest eigenvalue of B to bound the maximal
modularity possible from bisecting the graph, and the sign pattern of the eigenvector of the
associated eigenvector usually provides a good partition as measured by modularity [22].

It is natural to consider partitioning a network based on more than one eigenvector. This
concept goes under the name of spectral clustering in the machine learning literature [19,
29], and variants on this idea have been proposed several times in the context of community
detection [2, 5, 14]. The basic idea is simple: if we look across the dominant eigenvectors of
various matrices — the eigenvectors of the Laplacian associated with small eigenvalues, or the
eigenvectors of the transition matrix N = D−1A associated with large eigenvalues — then
entries corresponding to the same community are likely to be highly correlated. Therefore,
we associate with each node a point in a latent space whose coordinates are given by the
entries of the dominant eigenvectors associated with that node. Clustering these points in
latent space then reveals the communities.

2.4. Communicability and spectral clustering with overlaps. In recent work, Estrada
and co-workers have introduced definitions of community based on matrix functions [6–8].
The basic idea is to look at walks between pairs of nodes in a graph compared to walks in a
complete graph. The number of walks of length k between nodes i and j in G is eTi A

kej ,
where ei and ej denote the ith and jth column of the identity; the matrix exponential

exp(A) = I +A+
1

2
A2 +

1

3!
A3 + . . .

therefore gives a weighted combination of the number of walks of varying lengths between
any pair of nodes. Suppose A = QΛQT is an eigendecomposition of A with λ1 ≥ λ2 ≥
. . . ≥ λn. Then we can also write

exp(A) = Q exp(Λ)QT ,

where exp(Λ) = diag(exp(λ1), exp(λ2), . . .). Note that the number of very long walks
between nodes is approximately proportional to q1q

T
1 , where q1 is the dominant eigenvector

of A. Thus, the matrix

CA = exp(A)− q1 exp(λ1)qT1 = Q exp(Λ)QT − q1 exp(λ1)qT1
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can be interpreted as a measure of how well connected nodes are by short walks (compared
to some asymptotic state). Based on this intuition, Estrada and Hatano suggest forming the
“communicability graph” where i and j are connected if the (i, j) entry of CA is positive [6].
They then define a community to be a clique in the communicability graph.

Though it is not usually described as such, the Estrada-Hatano approach is closely related
to the latent-space approaches used in spectral partitioning. In most latent-space approaches,
one would choose a fixed number of eigenvectors as the basis of the latent coordinate system;
in contrast, the Estrada-Hatano method replaces a hard threshold separating the important
vectors from the unimportant ones with an exponential weighting that assigns more impor-
tance to the eigenvectors associated with the most positive eigenvalues. The (i, j) entry of
the communicability matrix CA is given by the inner product of vectors vi and vj , where

vi =


q2(i)eλ2/2

q3(i)eλ3/2

...
qn(i)eλn/2

 .
The condition that the (i, j) entry of CA is positive can then be interpreted as the condition
that the latent space vectors vi and vj form an acute angle. Of course, because of the expo-
nential weighting, only the first few components of these vectors are likely to matter much to
the value of the entry in CA.

2.5. The Motzkin-Straus program. Spectral partitioning based on the graph Laplacian
or the modularity matrix may be appropriate for finding a partition of a network into disjoint
pieces. But what about quadratic forms associated with local properties that might be more
appropriate for evaluating overlapping communities, such as relatively high edge density?
For example, consider the problem of finding a subgraph that maximizes the edge density
sTAs/‖s‖21. This leads to the natural continuous relaxation

maximize xTAx s.t. x nonnegative, eTx = 1.

According to a theorem of Motzkin and Straus [12, 21], the maximum value attainable in
this program is 1 − 1/cn, where cn is the maximum clique size. Furthermore, the scaled
indicator vector for a maximum clique is an optimizer for the problem. Thus, in this case,
the continuous relaxation of the optimization problem is exactly equivalent to the original
discrete problem — and both are NP-hard. Note that the nonnegativity constraint is crucial in
this problem; without the constraint, the objective function is unbounded.

It is instructive to consider the similarities and differences between clique finding using
the Motzkin-Straus formulation and spectral partitioning using the Fiedler vector. In both
cases, we can write down the original combinatorial problem as a discrete quadratic pro-
gramming problem with constraints, which we then relax to a continuous problem. But in the
case of the Laplacian or the modularity matrix, we were able to write the program in terms
of a sign indicator vector rather than a binary indicator vector, and so there was no need for
a nonnegativity constraint. Algebraically, we can switch from indicators to sign indicators
because Le = 0; in terms of the graph, what matters is that the Laplacian is used to measure
edges that are cut rather than those that are retained (and no edges are cut when we take G′

to be the entirety of G). In contrast, nonnegativity plays a crucial role in the Motzkin-Straus
program, and is likely to remain important in any optimization problem which emphasizes
internal edge density rather than the sparsity of edges cut. The Motzkin-Straus program also
involves a constraint on the `1 norm (‖x‖1 = eTx when x is nonnegative), and `1 norm con-
straints and penalties are popular for encouraging sparse solutions to optimization problems.
In contrast, the spectral partitioning program involves a constraint on the `2 norm.
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3. Communities via `1 minimization. Suppose U ∈ Rn×k is an orthonormal basis
for the invariant subspace associated with a few of the largest eigenvalues of the Laplacian
or the normalized Laplacian. A standard spectral approach to clustering the graph would
be to cluster rows of U via k-means [19, 29], though there are also other methods to ex-
tract communities. Like k-means, though, most such methods partition the nodes into hard,
non-overlapping clusters. These clusters may be recursively partitioned in order to expose a
hierarchy of communities, but aside from some stochastic approaches, most spectral methods
do not allow nodes to belong to multiple communities.

It is instructive to consider how spectral clustering works in a simple case when there
are two disjoint communities that are loosely connected. Let us consider the two dominant
eigenvectors v1 and v2 of the normalized Laplacian matrix Ā. If we were to decouple the two
communities, each would have an associated stationary distribution; let us call the vectors for
these distribution u1 and u2. According to the Simon-Ando theory, both eigenvectors are well
approximated by linear combinations of two local stationary distributions associated with the
two communities; that is,

v1 ≈ w11u1 + w21u2

v2 ≈ w12u1 + w22u2.

In matrix terms, we can write V ≈ UW , where

V =
[
v1 v2

]
, U =

[
u1 u2

]
, W =

[
w11 w12

w21 w22

]
.

Each row of U either has the form
[
α 0

]
or
[
0 α

]
, depending on whether the row corre-

sponds to a node in the first community or the second community. Therefore, each row of V
is either approximately proportional to

[
w11 w12

]
or
[
w21 w22

]
, depending whether the

node is associated with the first or second community. Thus, each community is associated
with a direction in two-dimensional space, and we can tell whether a node is in a community
or not by whether or not it is almost parallel to the community’s direction vector. Alternately,
we could normalize each row of V to unit Euclidean length, so that two nodes correspond to
the same community if the normalized rows are nearly identical.

Now, suppose we wanted to find all the nodes in the same community as node i in this
two-community example. One approach would be to cluster the rows as above. Another
approach is to seek a sparse vector in the span of V such that i is in the support. In general,
seeking sparse vectors in a given subspace is a hard problem, but in many cases a small `1

norm is a good proxy for sparsity. Hence, we seek to solve the linear programming problem

(3.1) minimize eT y = ‖y‖1 s.t. y = V x, y nonnegative, yi ≥ 1.

Note that each vector in the span of V is approximately a linear combination of u1 and u2, so
y ≈ α1u1 + α2u2 and eT y ≈ α1e

Tu1 + α2e
Tu2. Let us assume without loss of generality

that node i is in the first community; then the constraint yi ≥ 1 is approximately the same as
α1u1,i ≥ 1, while the nonnegativity constraint simply implies α2 ≥ 0. The solution to (3.1)
should therefore be α1 = u−1

1,i and α2 = 0, i.e. y is a simple scaling of u1.
More generally, suppose we had a basis V ∈ Rn×k for some k-dimensional subspace

of Rn, and that we believed V = UW where the columns of U are sparse and nonnegative.
Further, let us assume that the support of any given column of U (i.e. the set of indices
where there are nonzero elements) is not wholly contained in the supports of the remaining
columns. Under this assumption, y must be a positively-weighted linear combination of the
rows of U , and the objective function will be the corresponding combination of the row sums.
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A minimizer will then be y = uj/uj,i where j is chosen so that uj,i 6= 0 and eTuj/uj,i is
minimal; furthermore, this minimum will generally be unique.

With these examples for motivation, let us consider the following heuristic method for
community detection. Take some matrix V ∈ Rn×k, such as the dominant eigenvectors of the
normalized Laplacian, possibly subject to row scaling. Then solve the linear programming
problem

(3.2) minimize eT y = ‖y‖1 s.t. y = V x, y nonnegative, y(Jseed) ≥ 1,

where Jseed is the set of indices for some “seed” nodes that we require to be in the community.
The support of the resulting vector is then taken as a community containing all the nodes in
the seed set. In practice, of course, the vector will not typically be exactly sparse, so we
actually take our community to be all nodes such that yi ≥ δ, where δ is some threshold
value. Furthermore, we can relax the constraint that y should lie strictly in the span of the
columns of V , and instead force y to form a small angle with the space. To do this, we solve
the box-constrained quadratic programming problem

(3.3) minimize
1

2
yT (I − PV )y + τeT y s.t. y nonnegative, y(Jseed) ≥ 1,

where PV = V (V TV )−1V T is the orthogonal projector onto the span of V . The penalty
parameter τ balances the importance we assign to sparsity of the solution (as represented by
small `1 norm) versus how close the solution is to the span of V .

4. Approximate invariant subspaces. One drawback to spectral clustering approaches
is that they require the computation of eigenvectors. If the graph contains many small com-
munities, we might need many eigenvectors to resolve them. The usual approach to this
problem is a top-down recursion: use a few eigenvectors to partition the graph into coarse
communities, then use a few eigenvectors of the associated subgraphs to further partition the
coarse communities. We propose an alternate bottom-up approach: based on random walks
from the seed nodes, build local approximations to invariant subspace bases (possibly with
row scaling) associated with the dominant eigenvectors. We can then seek communities in
the direct sum of these (scaled) approximate invariant subspaces.

To motivate our approach, first consider random walks starting from node i. Let ei
denote the probability vector which is one on node i and zero elsewhere; then the distribution
of random walks of length k starting from node i is pk = Nkei. Now, consider the span of
the vectors Pk =

[
pk pk+1 . . . pk+l

]
, where k and l are some modest numbers. Note

that we can compute orthonormal bases for these spans indirectly using the recurrence

(4.1) QkRk = NQk−1,

where Q0R0 = P0 and where the upper triangular matrices R are chosen so that columns of
each Qk ∈ Rn×l are orthonormal. The iteration (4.1) is called subspace iteration []; and as
k →∞, Qk approaches an orthogonal basis for the dominant eigenspace associated with the
l largest eigenvectors of N . Our interest now, though, is not in the limiting case when k is
large, but for a much more modest number of steps. Intuitively, we expect rapid mixing of
random walks within any communities with which i is associated. In the case of such rapid
mixing, rows of Qk associated with one of these communities will end up pointing in much
the same direction. This suggests that the rows of Qk can be used to discriminate between
different mixing rates, depending on k.

Now, let V (i,k,l) denote an orthonormal basis for an l-dimensional subspace obtained
by taking k steps of subspace iteration as described above (starting from node i) and then
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scaling the rows to unit length. Within the communities associated with node i, we expect to
see rapid mixing; consequently, as in the Simon-Ando theory, those rows of V (i,k,l) should
all be pointing in nearly the same direction. In contrast, rows of V (i,k,l) associated with nodes
not closely tied to i will point in different directions. For a given seed, we now define V (k,l)

to be an orthonormal basis for the directed sum of the spaces spanned by the V (i,k,l) over all
i in the seed set. In V (k,l), we expect rows associated with a common community for all i to
point in approximately the same direction, while rows associated with nodes that are not as
tightly associated to most of the seed nodes will point in different directions.

5. The algorithm. Putting together the results of the previous two sections, we can
detect communities around a seed set by the following procedure:

1. Generate the basis V (i,k,l) for each seed node in turn.
2. Generate V (k,l) as an orthonormal basis for (approximately) the direct sum of the
V (i,k,l). The “approximately” comes from throwing out any nearly-linearly-dependent
columns as we go.

3. Solve the quadratic program (3.3) to get a score vector.
4. Optionally, reseed the algorithm by finding the highest-scoring node according to

setp 3, using it to augment the seed set, and re-running the algorithm from step 1.
5. Optionally, threshold the score vector and greedily refine the resulting indicator vec-

tor by adding/removing nodes from the subgraph so as to best improve the angle
between the indicator vector and the subspace at each step.

6. Experimental results. We now describe the results of some experiments based on the
algorithm from the previous section. In addition to some small test graphs, we demonstrate
our method on benchmarks generated by the method of Lancichinetti and Fortunato [17, 18]
and on Facebook data from Rice University.

6.1. Small graphs. We first test our algorithm on four sample graphs that are small
enough to be easily visualized: an artificial test set due to Wang et al. [], Zachary’s karate net-
work [], a graph of games played in the NFL [], and a social network of bottlenose dolphins [].
In each network, we arbitrarily chose node 11 as the sole seed node.

The test graph from the paper by Wang et al. is shown in Figure 6.1. The graph has four
tightly-coupled communities that are loosely tied together in a diamond. This structure is
very clearly defined, and it shows up clearly in the row-normalized adjacency spectrum as a
gap between the fourth and fifth eigenvalues (Figure 6.2). We compute our score based on a
four-dimensional approximate eigenspace computed from ten steps of a random walk starting
at 11. The nodes in the relevant community are clearly the highest scoring. We choose our
indicator vector to indicate all ndoes with score greater than 0.5, and the cosine of the angle
between this indicator vector and the relevant subspace is 0.987.

The social network studied by Zachary (Figure 6.3) describes relationships between
members in a karate club that split into two different clubs. Unlike in the previous exam-
ple, though, there is no clear gap in the spectrum of the normalized adjacency matrix between
the second and third eigenvalues (Figure 6.4). This reflects the fact that the two communities
in this case are not nearly as well-defined: there are quite a few connections between the two
groups, and each group contains members with degrees of only one or two. Nonetheless,
we recover a good partitioning of the network into two groups using a two-dimensional sub-
space based on random walks of up to length ten; and the angle between the subspace and the
thresholded score vector is 0.931.

The football league network (Figure 6.5) has ten or eleven distinct, well-defined modules,
and these are well reflected in the spectrum of the normalized adjacency matrix (Figure 6.6).
Despite the relatively large number of communities in the network, we are able to pull out
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the community containing node 11 using a subspace of dimension 4 based on random walks
of length at most ten. This illustrates that we are able to obtain useful information about
the community structure of the network without getting close to converging to an invariant
subspace. The angle between the computed community indicator vector and the subspace is
0.976.

The final small test graph is the dolphin social network shown in Figure 6.7. This network
has a small spectral gap after the first two eigenvalues, and it does indeed partition reasonably
well into two subgraphs (Figure 6.8). However, like the karate club graph, there is significant
variation in the node degrees. We again use a two-dimensional subspace based on walks of
up to length ten to compute the score vector. Unlike the previous examples, though, greedy
optimization of the angle changes the indicator vector returned by an initial thresholding of
0.5. If we simply use a threshold of 0.5, the cosine of the angle between the subspace and
the indicator vector is 0.937; if we add another seven nodes, to our computed community we
bring the cosine up to 0.975.

6.2. Lancichinetti-Fortunato graphs. The benchmark graph generation method due to
Lancichinetti and Fortunato has been used to compare several different community detection
methods [17, 18]. These random graphs are characterized by power law distributions for node
degrees and community sizes and a topological mixing parameter µ that controls the fraction
of the links for each node that cross to a community with which the node is not associated.

In Figure 6.9, we show the structure of the adjacency matrix for an LF graph with 1000
nodes, 28 communities, and a mixing parameter of 0.5. The nodes are sorted according to
their community index, so the community structure is clearly visible as a block structure along
the diagonal. The community structure is also clearly visible in the structure of the spectrum
of the normalized adjacency matrix (Figure 6.10) in the form of a gap between eigenvalue 28
(0.4997) and eigenvalue 29 (0.4344). In Figure 6.11, we show the raw score vector returned
when we start with a seed of two neighbors chosen at random from one community. For each
seed, we update the space the top three vectors obtained from looking at random walks of up
to length ten. Though our search subspace is only six-dimensional, the score vector clearly
indicates the desired community, and simple thresholding at 0.5 yields a set with a Jaccard
similarity of 0.95 to the true community 14. The computed community is wrong only in that
it has two extra nodes in community 19, which respectively have two and three links into
community 14.

As a second example, in Figure 6.12, we show the adjacency matrix for an LF graph
with 1000 nodes, 32 communities, and a mixing parameter of 0.6. In this problem, the gap
between eigenvalues 32 (0.4458) and 33 (0.4385) is much smaller than in the previous ex-
ample, enough so that it is difficult to see the gap in a plot (Figure 6.13). As in the previous
example, we build a six-dimensional subspace starting from a seed of size two. The resulting
score vector is shown in Figure 6.14. If we threshold this vector at 0.5, 19 of the resulting 20
nodes belong to the true community (which has size 32). If we choose the 32 highest scoring
nodes, 28 of them are in the true community. In this case, however, greedily changing the set
to optimize the angle to the subspace is a poor strategy, since it adds many nodes that do not
belong to the community.

As a final example of an LFR benchmark graph, we consider an adjacency matrix for
an LF graph with 1000 nodes in 47 communities. Half the nodes belong to two different
communities, and for each node 30% of the links go to a community with which the node
is not directly associated. The spectrum of the normalized adjacency matrix, shown in Fig-
ure 6.15, does have a gap between eigenvalues 47 and 48, but this gap is not pronounced. We
chose two nodes at random from community 18 to use as a seed; between the two of them,
these nodes have six neighbors in community 18, but they also have five neighbors in com-
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FIGURE 6.1. Labeled test graph of Wang et al. The gray level indicates the raw score vector; nodes in squares
are in the thresholded community.
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FIGURE 6.2. Eigenvalues for the normalized adjacency matrix of the test graph of Wang et al. Note the clear
gap between the fourth and fifth eigenvalues.
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FIGURE 6.3. Labeled graph of the Zachary karate network. The gray level indicates the raw score vector;
nodes in squares are in the thresholded community.
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FIGURE 6.4. Eigenvalues for the normalized adjacency matrix of Zachary’s karate network. Though this graph
is usually partitioned into two, note that there is not a clear spectral gap after the first two eigenvalues.

munity 25 and four neighbors in community 4. If we try to extract the community structure
as before from a six-dimensional subspace grown via random walks from the two seed nodes,
we obtain the score vector shown in Figure 6.16. While this vector somewhat reflects the
community structure we seek, it is also contaminated by large scores for nodes that belong to
communities 4 and 25. We can surpress this undesired signal using the re-seeding approach
described before, where we incrementally expand the seed set based with high-scoring nodes
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FIGURE 6.5. Labeled graph of the football league network. The gray level indicates the raw score vector;
nodes in squares are in the thresholded community.
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FIGURE 6.6. Eigenvalues for the normalized adjacency matrix of the football network. There are clear gaps
in the spectrum after the eleventh, twelfth, and thirteenth eigenvalues.

from a previous computation. The results after a dozen re-seedings are shown in Figure 6.17.
Simply thresholding the vector in Figure ?? with a cutoff of 0.5 gives a set of size 41 which
overlaps community 18 (which has size 32) in 31 nodes. Of the 32 top-scoring nodes, 29 are
in community 18.

We draw three main conclusions from our experiments with the LF benchmark graphs:
1. We can find good approximate community indicator vectors from low-dimensional

subspaces (of size 6) based on random walks even when the total number of com-
munities is much larger.
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FIGURE 6.7. Labeled graph of the dolphin social network. The gray level indicates the raw score vector;
nodes in squares are in the thresholded community.
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FIGURE 6.8. Eigenvalues for the normalized adjacency matrix of the dolphin social network. There is a gap
in the spectrum after the first two eigenvalues.



COMMUNITIES VIA QUADRATIC PROGRAMMING 15

0 100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400

500

600

700

800

900

1000

nz = 15746

FIGURE 6.9. Spy plot of the adjacency matrix for the non-overlapping LFR benchmark example (mixing
parameter 0.5)
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FIGURE 6.10. Largest eigenvalues of the normalized adjacency matrix for the first LFR benchmark graph
(Figure 6.9).
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FIGURE 6.11. Score vector for the two-node seed of 492 and 513 in the first LFR benchmark graph (Figure 6.9).
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FIGURE 6.12. Spy plot of the adjacency matrix for the non-overlapping LFR benchmark example (mixing
parameter 0.6)
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FIGURE 6.13. Largest eigenvalues of the normalized adjacency matrix for the second LFR benchmark graph
(Figure 6.12).
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FIGURE 6.14. Score vector for the two-node seed of 492 and 513 in the second LFR benchmark graph (Fig-
ure 6.12).
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FIGURE 6.15. Largest eigenvalues of the normalized adjacency matrix for the third (overlapping) LFR bench-
mark graph.

100 200 300 400 500 600 700 800 900 1,000
0

0.5

1

Index

Sc
or

e

FIGURE 6.16. Score vector for the two-node seed of 521 and 892 in the overlapping LFR benchmark graph.
The indicator vector for the true community is marked with red squares.
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FIGURE 6.17. Score vector for the two-node seed of 521 and 892 in the overlapping LFR benchmark graph
after 12 reseeds. The indicator vector for the true community is marked with red squares.
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2. The method still provides useful information even when there is a large gap between
the first and second eigenvalue and a very small gap between the λc and λc+1, where
c is the number of communities.

3. When the communities overlap substantially, the subspaces drawn from a very small
seed set may be insufficient to distinguish one of the several communities to which
the seed set is closely connected. The re-seeding strategy is useful for expanding the
seed set enough that it is possible to extract just one community.

7. Conclusions. In this report, we have described methods for detecting potentially
overlapping communities in networks by searching for sparse vectors in subspaces. In con-
ventional spectral approaches, we would usually look in invariant subspaces spanned by a
few eigenvectors of the graph Laplacian, the normalized Laplacian, the adjacency matrix, or
some related matrix. Motivated by the connection between the dominant eigenvectors of a
transition matrix and the transient dynamics of mixing in an associated Markov chain, we
propose an alternate method to construct subspaces based on the eigenvector approximations
drawn from short random walks. We illustrate our approach on small test examples drawn
from the literature and generated by a standard benchmark code. Based on these examples,
we observe that our approach to generating subspaces can yield good approximations, even
when we construct a subspace that is substantially smaller than the number of communities.
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