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Abstract

Rigorous safety evaluation of learning-based autonomous systems, especially those in safety-critical

domains, is important to be done prior to wider deployment. Such autonomous systems are often

highly complex, involving several interaction layers of learned models. These systems are therefore

treated as a black-box in practice and are evaluated using simulations of random processes, with the

goal of estimating relevant risk measures. This thesis presents a novel framework called curriculum

sampling that aims to efficiently evaluate such black-box systems using random sampling.

One of the main challenges in designing an estimator based on random sampling is ensuring that a

desired level of variance can be achieved with a reasonable sample size. This is particularly important

in domains such as the safety evaluation task considered in this work, where simulation of the given

system is computationally expensive. Importance sampling is a common variance reduction method

that uses an alternative sampling distribution to improve sample efficiency. If not used carefully,

however, the method could lead to an estimate with infinite variance and hence be worse than

simple Monte Carlo. Using the idea of adapting the sampling distribution from adaptive importance

sampling, curriculum sampling aims to achieve sample efficiency while maintaining stability of the

procedure by decomposing the given problem into a series of subtasks solved in sequence.

In curriculum sampling, the distribution is adapted depending on the subtask being solved and

the representation of uncertainty of the current estimate used. A given subtask is considered solved,

if the uncertainty on the current estimate reaches some threshold, and the procedure continues

until the last one is solved. The full set of samples collected is then used to estimate one or

more measures of interest. We apply the approach to both sequential and non-sequential cases,

demonstrating its use in estimating the tail risk measures called value-at-risk and conditional value-

at-risk. The algorithm that we propose for the sequential case, in particular, can be adopted for

many risk estimation settings by appropriately designing the input space. Specifically, we apply

the algorithm to evaluating a sequential system in presence of state-dependent disturbances in a

given environment. We also demonstrate the approach in evaluating an autonomous vehicle policy

in simulation, with the goal of estimating the risk measures across a set of scenarios.
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Chapter 1

Introduction

Recent advances in the field of artificial intelligence allowed developing autonomous systems for an

increasing number of real-world applications. More of such learning-based systems are applied to

safety-critical domains [16] such as autonomous driving, and rigorous safety evaluation of the sys-

tems is hence becoming increasingly important. These systems, however, are often highly complex,

involving multiple layers of interactions between learned models. As such, in practice, such systems

are treated as a black-box [18], where we have access only to the output from the system for the

input that we provide. In this work, we explore adaptive algorithms [4] for evaluating such black-box

systems using random sampling with the goal of efficiently estimating relevant risk measures.

In evaluating black-box systems, we are typically interested in estimating such measures as the

probability of failure or tail quantiles. These measures by definition are concerned with rare events,

and simple Monte Carlo is often inefficient in terms of the number of samples needed to achieve a

desired level of accuracy or variance. Importance sampling is a common variance reduction method

that is natural to employ for such estimation problems involving rare events. It uses an alternative

distribution that is better suited to the given estimation problem to draw samples, and, in a more

advanced method such as adaptive importance sampling, the sampling distribution is adaptively

updated in order to further improve efficiency. We extend this idea of adaptive sampling distribution

to propose a novel framework for estimating a set of dependent tail statistics in a stable and sample

efficient manner.

After an introduction of the general framework, we present a detailed implementation of an

importance sampler for estimating tail risks in non-sequential settings. We then discuss an extension

of the framework to sequential settings, presenting a tree search-based algorithm for evaluating

sequential systems. Lastly, we apply the algorithm to evaluation of autonomous vehicle policy in

simulation, demonstrating that the algorithm can be used to estimate risks and also to discover

relevant failure events.

1



CHAPTER 1. INTRODUCTION 2

1.1 Contributions

The following is a brief summary of the contributions of this work. A more detailed summary can

be found in Section 6.1.

• A novel framework called curriculum sampling designed for stable and sample efficient esti-

mation of a set of dependent tail statistics is proposed.

• A concrete implementation of the framework for estimating value-at-risk and conditional value-

at-risk is given with experimental results demonstrating the algorithm.

• An application of curriculum sampling to risk estimation in sequential settings with a tree

search algorithm is presented.

• An application of the tree search algorithm to evaluating autonomous vehicle systems across

a space of scenarios is presented.

1.2 Overview

This chapter has briefly introduced the core problems to be solved and the approaches explored in

this work. The rest of the thesis is organized as follows.

Chapter 2 provides an overview of the core concepts discussed throughout the thesis. These

include the basics of importance sampling, the risk measures to estimate using importance sampling,

and the formulation of reinforcement learning tasks.

Chapter 3 motivates the idea of adaptive importance sampling and introduces the curriculum

sampling framework where a representation of uncertainty in estimates is used to design a stable

sampling procedure to estimate a dependent set of statistics. This chapter provides a detailed

implementation of the framework for estimating the risk measures introduced in Chapter 2 and

demonstrates the algorithm on a quantile estimation problem.

Chapter 4 extends the fundamental idea of curriculum sampling to the problem of evaluating

sequential systems. This chapter discusses a formulation of the task as an instance of Markov

decision process and presents a tree search-based algorithm for estimating risks in presence of state-

dependent disturbances to the system under test. This chapter concludes with experimental results

demonstrating the algorithm on a test environment.

Chapter 5 applies the tree sampling algorithm presented in Chapter 4 to evaluating an au-

tonomous vehicle policy in simulation. Applying the algorithm to the space of scenarios of interest,

the chapter demonstrates that the algorithm can be adopted to both evaluate risks and discover

relevant failure scenarios for autonomous vehicle systems in simulation.

Chapter 6 summarizes the thesis and concludes with ideas for further research.



Chapter 2

Background

This chapter discusses the core concepts explored throughout this work, reviewing the basics of

importance sampling, risk estimation, and reinforcement learning. Following a brief introduction in

the first section, the second section explains the basic theory on importance sampling. The third

section presents the definitions of the tail risk measures that we use to evaluate black-box systems

and motivates their use. The fourth section discusses the basic formulation of reinforcement learning

tasks also introducing relevant notation. We close with a short discussion summarizing the chapter

at the end.

2.1 Introduction

Monte Carlo methods are concerned with learning about a system by estimating the relevant statis-

tics using simulations of random processes [25]. It is conceptually simple and typically easy to

implement, and, depending on the problem, it is often the only feasible approach [28].

In analyzing a random sampling-based estimator, we are interested in understanding its bias

and variance. Roughly speaking, the bias of an estimator is a measure of how much the expected

estimate deviates from the true value, whereas the variance is a measure of how much the estimates

are expected to spread out from the mean. We generally want an estimator that is unbiased and

of low variance, but, in practice, one often has to make trade-offs between the two when choosing

an estimator. Among a set of unbiased estimators, the one with the lowest variance is preferred.

There are several common variance reduction methods, and the one called importance sampling is

explored in depth in this thesis.

3



CHAPTER 2. BACKGROUND 4

2.2 Importance Sampling

Consider the problem of estimating Ep[f(X)], that is, the mean of the function f(X) with X drawn

according to the distribution p. Suppose that f(X) is such that it is non-zero only in some region T

for which p(X ∈ T ) is small. In such a case, the vast majority of the samples collected using simple

Monte Carlo would be outside of the region and not contribute to the estimate. Intuitively, we want

to draw samples from this region of importance that would contribute more to the estimation. This

is the fundamental idea of importance sampling, where we use an alternative distribution q that puts

higher weights over such regions of importance to draw samples. To account for the bias from using

a different distribution, the weights of the samples are adjusted appropriately so that we have an

unbiased estimate of the quantity.

Importance sampling is a popular variance reduction method that can make problems that are

otherwise too hard amenable to Monte Carlo methods. However, depending on the choice of the

distribution or the weighting scheme, it could lead to issues such as infinite variance. It is hence a

method that is useful but difficult to use well [32].

We now review the basic theory on bias and variance of a simple importance sampling estimator.

2.2.1 Basics

Let p be the probability density on Rd under which we want to estimate the mean of the function f ,

that is, µ = Ep[f(X)]. Suppose that q is another probability density such that q(X) > 0 whenever

f(X)p(X) ̸= 0, then

µ =

∫
f(x)p(x) dx =

∫
f(x)p(x)

q(x)
q(x) dx = Eq

[
f(X)p(X)

q(X)

]
, (2.1)

where Eq(·) denotes that the expectation is over X drawn from q. The condition of q(x) > 0

whenever f(x)p(x) ̸= 0 roughly means that we want to be able to draw all samples under q that

could contribute to the mean (i.e., x for which f(x)p(x) ̸= 0). Note that this is not the same as

requiring q to be positive whenever p is positive, which is a stronger condition that is often used in

other importance sampling settings.

Eq. (2.1) tells us that computing the original µ, which is the expected value of f(X) for X ∼ p,

is equivalent to computing the expected value of f(X)p(X)
q(X) for X ∼ q. This equivalence is established

by making an adjustment using the correction factor w(x) = p(x)/q(x), called the likelihood or

importance ratio, to f(x). The probability density p is called the nominal or target distribution

and q the proposal or importance distribution. Note that we would not encounter those samples for

which q(x) = 0 when sampling from q, and hence not need to worry about division-by-zero when

computing the expectation. However, samples with q(x) close to 0 could lead to numerical issues

[32].
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Given a proposal distribution q as described above, the importance sampling estimator of µ =

Ep[f(X)] is given by

µ̂q =
1

n

n∑
i=1

f(Xi)p(Xi)

q(Xi)
=

1

n

n∑
i=1

f(Xi)w(Xi), (2.2)

where each Xi is drawn according to the distribution q.

2.2.2 Analysis

We now show that the importance sampling estimator as defined in Eq. (2.2) is an unbiased estimator

of µ and analyze its variance.

Theorem 2.2.1. The importance sampling estimator µ̂q of µ is unbiased and has variance σ2
q/n

where

σ2
q =

∫
f(x)2p(x)2

q(x)
dx− µ2 =

∫
(f(x)p(x)− µq(x))2

q(x)
dx. (2.3)

Proof. We first show that µ̂q is an unbiased estimator, that is, Eq[µ̂] = µ. Indeed,

Eq[µ̂] = Eq

[
1

n

n∑
i=1

f(Xi)p(Xi)

q(Xi)

]
=

1

n

n∑
i=1

Eq

[
f(X)p(X)

q(X)

]

=
1

n

n∑
i=1

∫
f(x)p(x)

q(x)
q(x) dx =

1

n

n∑
i=1

∫
f(x)p(x) dx

=
1

n

n∑
i=1

Ep[f(X)] = µ.

Note that the second-to-last equality holds, because we assumed that q(x) > 0 whenever f(x)p(x).

Using what we just derived, we compute the variance of the estimator as

Varq[µ̂] =
1

n

(∫ (
f(x)p(x)

q(x)
− µ

)2

q(x) dx

)

=
1

n

(∫
(f(x)p(x)− µq(x))2

q(x)
dx

)
=

1

n

(∫
(f(x)p(x))2 − 2(f(x)p(x))(µq(x)) + µ2q(x)2

q(x)
dx

)
=

1

n

(∫
(f(x)p(x))2

q(x)
dx− 2µ ·

∫
f(x)p(x) dx+ µ2 ·

∫
q(x) dx

)
=

1

n

(∫
(f(x)p(x))2

q(x)
dx− 2µ2 + µ2

)
=

1

n

(∫
(f(x)p(x))2

q(x)
dx− µ2

)
.
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The variance analysis above gives us a sense of what might be a good choice of proposal distri-

bution, that is, the one that minimizes the variance. Specifically, the first equality in Eq. (2.3) tells

us that we want q such that
∫ f(x)2p(x)2

q(x) dx is as small as possible. Since µ2 is fixed, the integral

term gives an upper bound on σ2
q . Moreover, the second equality in the equation suggests that the

one that makes the numerator f(x)p(x) − µq(x) as small as possible would be desirable. However,

we should also be careful about the denominator q(x), as it can amplify the squared difference in

the numerator.

In general, we would like to choose a density that is close to being proportional to |f(x)|p(x) and
the one that does not have light tails. Using such a density q means thatX ∼ q with higher |f(x)|p(x)
is more likely to be drawn. This intuitively makes sense, as X ∼ q with higher |f(x)|p(x) potentially
contributes more to the mean that we want to estimate, and hence is of greater importance. The

next theorem formalizes this observation.

Theorem 2.2.2. Let q∗(x) = |f(x)|p(x)/c, where c is the normalization constant, that is, c =∫
|f(x)|p(x) dx. If q is an arbitrary density such that q(x) > 0 whenever f(x)p(x), then σq∗ ≤ σq.

Proof. Using Eq. (2.3),

µ2 + σ2
q∗ =

∫
f(x)2p(x)2

q∗(x)
dx =

∫
f(x)2p(x)2

|f(x)|p(x)/c
dx

= c ·
∫
|f(x)|p(x) dx =

(∫
|f(x)|p(x) dx

)2

=

(∫
|f(x)|p(x)

q(x)
q(x) dx

)2

≤
∫

f(x)2p(x)2

q(x)2
q(x) dx

=

∫
f(x)2p(x)2

q(x)
dx = µ2 + σ2

q ,

where the inequality is a consequence of the Cauchy-Schwarz inequality [32].

2.3 Risk Measures

Let X ∈ Rd be a random vector representing the input to a system under test or the environment

in which such a system is evaluated. Also, let c : Rd → R be a deterministic, positive, real-valued

function that represents the cost associated with the system given input X. The cost c(X) then

is a random variable with the distribution induced by that of the input X. The random vector X

can represent, for instance, a set of sensor noises drawn from some fixed distributions applied to an

autonomous vehicle system under test. And the cost function c can be the potential loss in property

values that such disturbances applied to the autonomous system could lead to.
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Figure 2.1: An illustartion of VaRα and CVaRα with α = 0.95 of a cost distribution [30].

Among various risk measures, value-at-risk (VaR) and conditional value-at-risk (CVaR) [35] are

commonly used, especially in risk management, portfolio optimization [26], etc. The risk measures

are defined as

VaRα(X) = inf{c | Fc(X)(c) ≥ α} (2.4)

CVaRα(X) = E[c(X) | c(X) ≥ VaRα(X)], (2.5)

where F (·) is the cumulative distribution function (c.d.f.) of the cost c(X). That is,

Fc(X)(c) =

∫
c(x)≤c

p(x) dx (2.6)

with p(·) denoting the probability density function (p.d.f.) of X. In words, VaRα is the smallest

c such that the cost would not exceed this value with probability α, and CVaRα is the conditional

expectation of the cost above VaRα. Mathematically, VaRα is the α-quantile of the cost distribution.

The value of α is generally chosen to be α ≈ 1 with typical values 0.90, 0.95, and 0.99 [34].

Note that the worst-case cost is another common risk measure that is often analyzed, but, in

some domains, it is considered less informative than the more subtle tail risks such as VaRα and

CVaRα. This is especially the case if the probability of the event is so low that incurring such a cost

is extremely unlikely.

2.4 Reinforcement Learning

Later in this thesis, we will consider the problem of evaluating sequential systems and formulate the

task as an instance of reinforcement learning (RL) problem. In this section, we briefly discuss some

of the basics of RL and introduce relevant concepts and notations.
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RL is concerned with constructing an autonomous agent that is able to act in an environment in

order to maximize the expected return. In contrast to the standard supervised learning, no direct

supervision as to what actions should be taken in different situations is provided to the agent. The

goal is for the agent to learn a good policy based on the series of reward signals that it receives

from the environment through interaction. Common challenges in RL include training the agent

to generalize to unseen environment states, designing a suitable strategy to explore promising state

space without incurring too much opportunity cost, and what is often referred to as the credit

assignment problem, where the agent needs to appropriately attribute the reward signals it receives

to the previous actions taken possibly from a distant past.

This setup is typically formalized using a Markov decision process (MDP) which is defined by

a set of states S, a set of actions A, a transition function T (s′ | s, a) representing the probability

distribution over the next states following action a from state s, and a reward function R(s, a)

representing the scalar reward given to the agent for executing a from s. In each discrete time

step t, the agent in state st chooses an action at based on its policy and transitions to a new state

st+1 according to the dynamics model of the environment unknown to the agent. Following each

transition, the agent receives a scalar reward rt+1 which the agent uses to update its policy. The

discounted sum of rewards defined as R =
∑∞

k=0 γ
krt+k+1 with γ ∈ [0, 1] is what the agent wants to

maximize. Hence, the objective of the agent is to learn a good policy so that the expected discounted

return is maximized [1]. That is,

π∗ = argmax
π

E[R | π]. (2.7)

An agent can either learn a policy directly or construct one based on some other learned quan-

tities. In value-based RL methods, an agent learns an estimate of the expected discounted return,

represented as the value function V π(s) or the state-action value function Qπ(s, a). Given such

an estimate, a policy can be constructed by selecting actions that result in the highest estimated

expected returns. Q-learning is one such value-based method that using the recursive relation

Q(st, at) = Est+1
[rt + γ ·Qπ(st+1, π(st+1))]

iteratively improves the estimate with the bootstrap target as

Q(st, at)← (1− α)Q(st, at) + α(rt + γ ·max
a

Q(st+1, a)),

where α is the learning rate. The algorithm converges to an optimal Q-function in the tabular case,

that is, Qi → Q∗ as i→∞ [40].

Estimating the Q-function for each state and action pair becomes infeasible when the state or
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action space is too large or even continuous. For such problems, a function approximator parame-

terized by θ is used to estimate the Q-function: Q(s, a; θ) ≈ Q∗(s, a). A simple linear function or

a more complex non-linear function such as a deep neural network can be used as the function ap-

proximator. Using a deep neural network to approximate the Q-function led to the Deep Q-network

(DQN) algorithm that achieved human-level performance on Atari games [20].

2.5 Discussion

In this chapter, we reviewed some of the fundamental concepts discussed throughout this work

including basic importance sampling, risk measures to estimate, and formulation of reinforcement

learning problems.

We discussed that, in designing a Monte Carlo estimator, the one that is unbiased and of low

variance is more desirable, and that importance sampling is a common variance reduction method

that is natural to employ in certain situations. Specifically, for problems in which estimating the

desired quantity using samples drawn from the nominal distribution is inefficient, one can use an

alternative sampling distribution to design a better estimator. It is worth emphasizing that impor-

tance sampling makes more sense in such cases where the samples that would contribute most to

estimating the target quantity have low chance of being drawn from the nominal distribution. In

other cases, simple Monte Carlo estimation may well be sufficient.

In risk evaluation, we are typically interested in estimating quantities that are related to rare

events such as the tail risk measures that we discussed. The chance of drawing those samples that

are more relevant to such measures is by definition low under the nominal distribution. Hence,

importance sampling is conceptually sound for such estimation problems, if an appropriate proposal

distribution can be devised.

In the rest of the thesis, we explore several importance sampling ideas in the context of risk

estimation, proposing a general sampling framework as well as concrete implementations applicable

to different problem settings considered.



Chapter 3

Curriculum Sampling

This chapter introduces an importance sampling method that is explored in detail throughout the

thesis called adaptive importance sampling, presenting the fundamental concepts and the general

framework. The first section motivates the core idea of adapting proposal distributions during

sampling. The second section discusses the fundamental concepts such as using multiple proposal

distributions, sample weighting strategies, and the basic framework of adaptive importance sam-

pling. The third section motivates and presents a novel framework called curriculum sampling that

incorporates a representation of uncertainty into the sampling procedure such that it can, for in-

stance, be adopted for stable estimation of tail statistics. The fourth section demonstrates applying

curriculum sampling to a quantile estimation task presenting the experimental results and analysis.

3.1 Introduction

In order to use importance sampling for estimation well, we need to carefully choose a proposal

distribution that is appropriate for the given problem. In general, we would like a distribution that

lets us draw more samples from parts of the space that are most relevant to estimating the quantity

of interest. Designing such a proposal, however, is often difficult to do a priori. This leads to the

idea of adaptive importance sampling in which, in an iterative process, we draw samples from one or

more proposal distributions that are adapted based on the previous samples to improve the quality

of the future samples and hence the estimation accuracy [7].

The idea of using an adaptive procedure is especially relevant to risk estimation of black-box

systems in which we have limited understanding of the systems a priori to design an appropriate

algorithm. For instance, the cost distribution c(X) induced by the input random vector X as

described in Section 2.3 is often unknown a priori and needs to be estimated during the sampling

procedure. Hence, it makes intuitive sense for us to adapt our sampling strategy, that is, the proposal

distribution, as our estimate of the cost distribution gradually improves with additional samples that

10
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we iteratively collect.

3.2 Adaptive Importance Sampling

3.2.1 Multiple Importance Sampling

Adaptive importance sampling is closely related to the importance sampling method called multiple

importance sampling [31, 12] in which a set of proposal distributions {qi(x)}ni=1 is used to draw

samples. Given a set of distributions, we can draw samples from each of the proposals, from a mixture

of the distributions, etc. in each step of the sampling procedure. Using multiple distributions is

useful, for instance, if f and the nominal p are such that finding a single proposal distribution that

is approximately optimal, that is, close to being proportional to fp and has heavier tails than p is

difficult.

With multiple distributions to sample from, there are also several ways to assign weights to the

samples drawn. Recall that, in case of a single proposal distribution, each sample is assigned the

weight of w(X) = p(X)/q(X). For multiple importance sampling, common weighting strategies used

include the following:

1. Standard weighting [9]:

w(X) =
p(X)

qi(X)
. (3.1)

2. Deterministic mixture (DM) weighting [31]:

w(X) =
p(X)

n−1
∑n

i=1 qi(X)
. (3.2)

Note that the standard weighting is equivalent to the weighting strategy used for the case of a single

proposal. In other words, the weight of each sample is computed based only on the proposal distri-

bution from which the sample was drawn. On the other hand, in deterministic mixture weighting,

the weight is computed based on the average of all n proposals for the given sample. Hence, this

weighting strategy is more computationally expensive as it involves n+1 evaluations of the proposals

(as opposed to 2 for the standard weighting), but it generally leads to lower variance than standard

weighting. This intuitively makes sense, because using the average in the denominator is likely to

result in a more stable weight. Note that we still have an unbiased estimator using this weight-

ing strategy. Besides the two discussed, more sophisticated weighting strategies such as applying

non-linear weight transformations have also been explored [22].

Consider the example illustrated in the first plot of the Figure 3.1 in which the nominal p is a

mixture of three Gaussian distributions such that fp is multi-modal, or has multiple peaks. Suppose

also that we want to use multiple Gaussians as our proposal distributions. Given the multi-modal
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Figure 3.1: Multiple importance sampling for a multi-modal nominal.
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(b) Deterministic mixture weighting.

Figure 3.2: Convergence of multiple importance sampling with different weighting schemes.

shape of p (as well as that of fp), it is natural to choose Gaussians each of which is located near

one of the peaks of fp. Note that it would be more challenging for a single Gaussian proposal

distribution to adequately cover the regions of interest given such a shape.

Figure 3.2 shows convergence graphs of both the baseline of using the nominal distribution and

multiple importance sampling with three Gaussians as the proposals. The plots demonstrate that,

depending on the weighting strategy used, the performance of multiple importance sampling in terms

of variance reduction can vary quite dramatically. The first plot shows the convergence behavior

when the standard weighting is used, and, in this case, multiple importance sampling had noticeably

larger variance compared to the baseline of simple Monte Carlo. This is due to those samples drawn

from the tails of the Gaussians, which have low qi(x) values that magnify the weights of the samples

when the standard weighting is used. In comparison, the second plot shows the convergence behavior

when the deterministic mixture weighting is used, and multiple importance sampling, in this case,

had lower variance compared to the baseline. Even if samples are drawn from tails of one of the
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Algorithm 3.1 Adaptive importance sampling framework.

Input: D ← {Di}ni=1 ▷ Initial proposal distributions
Output: S ▷ Samples collected
1: for i← 1 to N do
2: S ′ ← {}
3: for j ← 1 to n do
4: {s1, . . . , sk} ∼ Di ▷ Draw k samples
5: {w1, . . . , wk} ← weight({s1, . . . , sk}) ▷ Weight k samples
6: S ′ ← S ′ ∪ {(s1, w1), . . . , (sk, wk)}
7: D ← adapt(S ′,D) ▷ Adapt proposal distributions
8: S ← S ∪ S ′
9: return S

proposals, the weights of the samples can still be comparatively moderate, as the average of all

proposals is used to compute the weights.

3.2.2 General Framework

In adaptive importance sampling, one or more proposal distributions are iteratively adapted based on

previous samples such that subsequent samples to be drawn are more useful for the estimation task

at hand. Hence, adaptive importance sampling is closely related to multiple importance sampling

discussed above, and several of the ideas such as sample weighting strategies can naturally be

adopted.

The general framework of the algorithm, as outlined in algorithm 3.1, can be described as an

iterative process that repeats the following three steps: drawing samples from the set of chosen

proposal distributions, computing the weights of the samples (optionally update weights of previous

samples), and adapting the proposal distributions for the subsequent iteration [7]. Depending on

the choices made for the different aspects of the framework, one can have a distinct implementation

of the algorithm. For instance, one can decide what types of parameterized distributions to use as

the proposals, how many samples to draw in each step, how sample weights are computed, etc.

To illustrate the idea with an example, suppose that we want to estimate Ep[f(X)] using adaptive

importance sampling. Based on our prior knowledge about f and p, we choose a sufficiently flexible

function approximator that we use to approximate fp. This strategy is utilizing the general result

that using a proposal q that is approximately proportional to |f |p leads to lower variance when

estimating the mean as discussed in Section 2.2. In each step of the algorithm, we draw some

number of samples according to the current estimation of fp, compute the weights, and adapt the

approximation based on the new set of samples. As fp may not necessarily be a valid density,

we can use the self-normalized estimator in which the mean of the weights is used as an unbiased

estimation of the normalization constant. As this example illustrates, the idea of adapting the

proposal distribution based on previous samples is a powerful one that opens the door to many
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advanced and effective methods. Bugallo et al. [7] discusses several of such advanced algorithms in

greater detail.

3.3 Curriculum Sampling

Curriculum sampling is a new framework motivated by the idea of proposal adaptation in adaptive

importance sampling that is especially suitable for estimation problems that can logically be broken

into series of steps. The core idea of curriculum sampling is to design a curriculum of intermediate

target statistics and the corresponding proposals in order to estimate the desired measure in a stable

manner. This idea can naturally be applied to a broad set of estimation problems, but we present the

framework in the context of estimating the risk measures VaR and CVaR described in Section 2.3.

3.3.1 Estimation of Risk Measures

Given a deterministic cost function c : Rd → R, we estimate VaRα and CVaRα using simple

Monte Carlo by drawing n independent samples {X1, X2, . . . , Xn} from the nominal p and using the

following estimators

˜VaRα = inf{c | F̃n(c) ≥ α} (3.3)

˜CVaRα = ˜VaRα +
1

n(1− α)

n∑
i=1

max{c(Xi)− ˜VaRα, 0}, (3.4)

where F̃n(c) is the empirical c.d.f. computed as

F̃n(c) =
1

n

n∑
i=1

1{c(Xi) ≤ c}. (3.5)

Given that the measures are potentially concerned with extreme tail regions of the distribution,

the number of samples n may need to be very large before reaching our desired level of accuracy,

especially if the cost distribution has a long, thin tail. Hence, importance sampling is a natural

variance reduction strategy to use to estimate these measures.

Let q be an alternative distribution such that q(x) ̸= 0 whenever p(x) ̸= 0. For risk estimation,

we might choose q that we believe would more likely to lead to regions of high costs. Given such

a proposal q, we draw n independent samples {X1, X2, . . . , Xn} from q and use the following well-

known importance sampling estimators

ˆVaRα = inf{c | F̂n(c) ≥ α} (3.6)

ˆCVaRα = VaRα +
1

n(1− α)

n∑
i=1

max{c(Xi)−VaRα, 0}w(Xi), (3.7)



CHAPTER 3. CURRICULUM SAMPLING 15

where F̂n(c) is the empirical c.d.f.

F̂n(c) =
1

n

n∑
i=1

1{c(Xi) ≤ c}w(Xi) (3.8)

and w(Xi) = p(Xi)/q(Xi) the likelihood ratio. Under mild assumptions, we can establish the

following asymptotic properties of the estimators

√
n( ˆVaRα −VaRα)⇒

√
Varq[1{c(X) ≥ VaRα}w(X)]

p(VaRα)
N(0, 1) (3.9)

√
n( ˆCVaRα − CVaRα)⇒

√
Varq[max{c(X)−VaRα, 0}w(X)]

1− α
N(0, 1) (3.10)

as n→∞. Sun and Hong [38] gives greater detail on the asymptotic variance analysis. Intuitively,

the above analysis suggests that the samples whose costs are in the region near or above the α-

quantile are considered most useful, and the proposal distributions that put higher weights over

such samples can lead to lower variance compared to the simple Monte Carlo estimators.

We consider the following such distributions

qVaRα
(x) ∝ p(x) · 1{c(x) ≥ VaRα} (3.11)

for the VaRα estimator and

qCVaRα
(x) ∝ p(x) · (c(x)−VaRα) · 1{c(x) ≥ VaRα} (3.12)

for the CVaRα estimator. One subtlety to note is that among the samples in the tail region,

the proposal for the VaRα estimator prefer those samples with higher densities under the nominal

distribution p, whereas that for the CVaRα estimator prefer those samples with higher expected

costs under the nominal.

Since VaRα and CVaRα provide complementary information about potential risks, both are

often estimated simultaneously. And, given the definition of CVaRα, an accurate estimation of

VaRα is required before it itself can be accurately estimated. Hence, the challenge is in designing

the sampling procedure in such a way that would allow us to accurately estimate such a dependent

set of statistics in a sample efficient manner.

3.3.2 Approximate Proposals

The proposal distributions described above cannot be directly used in practice, as they depend on

the unknown VaRα, which is one of the very quantities that we want to estimate. One natural

relaxation to apply is to use the running estimate ˜VaRα in place of VaRα. In practice, however, this

can lead to biased estimates if not used carefully.
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Consider the relaxed proposal distribution

qVaRα
(x) ∝ p(x) · 1{c(x) ≥ ˜VaRα}, (3.13)

which draws samples in the estimated α-quantile region according to the nominal p. Suppose that

at some point during the sampling procedure, our running estimate ˜VaRα exceeds the true VaRα.

In subsequent iterations, we would sample from the region beyond the true α-quantile, leading our

running estimate ˜VaRα to further overestimate the true VaRα. This can ultimately lead to highly

biased estimates of the quantile. Hence, in order to compute an unbiased estimate in a stable

manner, we need to be conservative about how we use the running estimate ˜VaRα even if this

requires more samples to be drawn to achieve the desired level of variance. Otherwise, once the

estimate exceeds the true quantile, the bias issue can become progressively worse for the rest of the

sampling procedure.

To address this overestimation issue, we can apply another relaxation to the proposal as

qVaRα
(x) ∝ p(x) · P (c(x) ≥ VaRα), (3.14)

where we replace the indicator function with an estimated probability function. The basic idea is to

assign non-zero probabilities even to those samples that are believed to be below the α-quantile. This

could give us a chance to correct our running estimate when it exceeds the true VaRα by allowing us

to draw samples in the neighborhood of ˜VaRα. Independent of the choice of the probability function,

it is important to incorporate some representation of uncertainty in our running estimate into the

function so that we can adjust the probabilities as our confidence in the estimate changes. This is

to allow us to maintain the added stability in the procedure without sacrificing sample efficiency too

much. We discuss possible candidates for the probability function in the following section.

For settings in which the value of α is extremely close to 1 or our estimate of the uncertainty in

˜VaRα is too noisy, we can apply yet another relaxation as

qVaRα′ (x) ∝ p(x) · P (c(x) ≥ VaRα′), (3.15)

where α′ < α. Sampling from the more modest α′-quantile region instead of the original α is a

reasonable strategy especially in the early part of the sampling procedure when the estimate ˜VaRα

is likely to be noisy.

Note that there is an inherent tension between stability of the procedure and sample efficiency.

That is, a modest value of α′ can lead to a more stable procedure but correspondingly require more

samples until convergence. As a compromise, it is also natural to use a type of a schedule for the

value of α′, where we start out with a more modest value and progressively increase it towards the

original target α. This is similar to the idea of using a learning rate schedule in training machine
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Algorithm 3.2 Curriculum sampling framework.

Input: D ← {Di}di=1, C ← {ci}di=1 ▷ Distributions and required confidence levels
Output: S ▷ Samples collected
1: for i← 1 to d do
2: D ← Di

3: c← −∞
4: while c < ci do
5: D ← adapt(S, D, c) ▷ Adapt distribution
6: s ∼ D ▷ Draw samples
7: S ← S ∪ {s}
8: c← confidence(S) ▷ Update confidence score

9: return S

learning models, where we typically start with a relatively high learning rate at the beginning and

gradually reduce it towards the end for smoother convergence [41].

Once we have an accurate estimate of VaRα, we can start drawing samples from a proposal

distribution for estimating CVaRα. By applying a similar relaxation as above, we have a proposal

qCVaRα
(x) ∝ p(x) · (c(x)− ˜VaRα) · P (c(x) ≥ VaRα), (3.16)

where we use the running estimate ˜VaRα. If the probability function P is designed in such a way

that it assigns higher probabilities to samples of large values, then the above proposal can also be

simplified as

qCVaRα
(x) ∝ p(x) · P (c(x) ≥ CVaRα), (3.17)

where the estimated probability that c(x) ≥ VaRα is replaced with c(x) ≥ CVaRα.

Note that if we reverse the series of relaxations applied above, we end up with a reasonable

sequence of steps that we can take to simultaneously estimate both VaRα and CVaRα in a stable

manner. That is, we use the following proposal distributions in order

1. Estimate VaRα′ : qVaRα′ (x) ∝ p(x) · P (c(x) ≥ VaRα′) for α′ < α.

2. Estimate VaRα: qVaRα
(x) ∝ p(x) · P (c(x) ≥ VaRα).

3. Estimate CVaRα: qCVaRα
(x) ∝ p(x) · (c(x)− ˜VaRα) · P (c(x) ≥ VaRα).

We transition to the subsequent step when we are reasonably confident about our estimate of the

current target statistic.

We call this type of sampling strategy that consists of a series of intermediate proposal distri-

butions in order to estimate the target statistics in a stable manner curriculum sampling. This is

similar to the idea of curriculum learning in which a sequence of training tasks is carefully designed

in order to speed up convergence of training deep neural networks [3]. The algorithm can also be
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Figure 3.3: Sigmoid probability functions.

viewed as a type of adaptive importance sampling that is suitable when a dependent set of statistics

need to be estimated simultaneously.

3.3.3 Implementation

We now describe possible implementations of the algorithm in the context of estimating VaRα

and CVaRα, and propose suitable choices for such components of the algorithm as the probability

function and representation of uncertainty. Note that the implementation detail depends on the

estimation problem at hand, but the core idea of the framework is one that is more broadly applicable.

Choice of Probability Function

In choosing the probability function P , as used in Eq. (3.13), we want a function that is fast to

compute and one where we can easily incorporate our uncertainty estimate. One natural choice of

the function P is a type of sigmoid function, which is also commonly used in such models as logistic

regression [19], that is centered around the target estimate, that is,

P (c(x) ≥ VaRα) =
1

1 + exp (−(c(x)− ˜VaRα)/s)
, (3.18)

where s is a quantity computed based on our representation of uncertainty in the estimate ˜VaRα.

The probability function is adapted in such a way that the value of s is decreased (or increased)

if our uncertainty in the estimate decreases (or increases). Because the coefficient s determines the

steepness of the sigmoid curve, the function approaches the step function 1{c(x) ≥ ˜VaRα} as our
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uncertainty decreases, leading to higher probabilities of drawing samples above the estimate ˜VaRα.

If we are uncertain about the estimate, however, we would correspondingly increase the slope s such

that samples are drawn more broadly in the neighborhood of the current estimate. See Figure 3.3

for an illustration.

Representation of Uncertainty

One simple approach to quantifying uncertainty of our estimate is to use empirical variance computed

based on intermediate estimates. For instance, suppose that we want to estimate VaRα for a given α.

During the sampling procedure, we compute intermediate estimates of VaRα as we collect additional

samples to have a set of estimates { ˜VaR
1

α . . . ˜VaR
m

α }. Then, we can compute the empirical variance

as

S2 =
1

m− 1

m∑
i=1

( ˜VaR
i

α − ¯VaRα),

where ¯VaRα = 1
m

∑m
i=1

˜VaR
i

α is the empirical mean.

Given such an empirical variance, a few approaches are natural for translating it into the slope s

in the sigmoid probability function as a way of adapting the proposal distribution. One approach is

to set s such that the probability value of ˜VaRα+S, which is the cost that is one empirical standard

deviation above the mean ˜VaRα, to be some chosen ps > 0.5:

ps =
1

1 + exp (−(( ˜VaRα + S)− ˜VaRα)/s)
=

1

1 + exp (−S/s)
.

Simple algebraic manipulation yields the slope

s = −S/ log ((1− ps)/ps).

Depending on the choice of ps or the desired value for which we want the probability to be ps,

different slope calculations are possible.

Alternatively, in case such empirical variance is too noisy for such use, simple heuristics such as

starting with some initial slope sinit and annealing it towards some minimum slope smin are possible.

Regardless of the approach used, we experimentally found that having a minimum slope could be

beneficial for numerical stability, which we discuss more in the experiments section below.

Variations

Beyond the general framework discussed above for estimating VaRα and CVaRα, we present several

extensions that are natural to implement.
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Mixture Distribution. By definition, estimating CVaRα requires that we have an accurate es-

timation of VaRα. To estimate both measures simultaneously, it could make sense to combine the

two steps into one and use a mixture distribution that is a convex combination of the two proposals.

That is,

qmixtureα(x) ∝ λ · p(x) · P (c(x) ≥ VaRα) + (1− λ) · p(x) · (c(x)− ˜VaRα) · P (c(x) ≥ VaRα), (3.19)

where λ ∈ [0, 1] is the mixture parameter. For such a distribution, we can anneal the parameter λ

to gradually put more weight on the CVaRα component as our confidence in the estimate of VaRα

increases. Note that a proper normalization is desirable when mixing the two distributions, as the

proposal for the CVaRα estimator has the cost component that can otherwise dominate the sum.

Burn-in Period. The estimate ˜VaRα is likely to be noisy at the start of the sampling procedure,

especially for values of α ≈ 1. One approach we discussed for addressing this issue was to start with

α′ < α before the target α. We can also complement this approach with an initial period of sampling

from the nominal distribution until we start sampling from the proposal for estimating VaRα′ . We

call this the burn-in period given its resemblance to a similar idea in Markov chain Monte Carlo

(MCMC) [33]. However, the samples collected during the burn-in period are not discarded but used

in estimation.

Alpha Schedule. In designing a curriculum that consists of multiple of the steps of using α′ < α,

we can use a few simple scheduling algorithms to set α′. Given the number of such steps N , we can

set α′ such that it approaches the target α either linearly or exponentially. That is,

α′ + k(α− α′)/N or α′rk,

where k ∈ [0, N) is the step count and r = exp (log (α/α′)/N) the multiplicative factor. Similar

approaches are also commonly used in designing learning rate schedules for training machine learning

models as previously discussed.

3.4 Experiments

In this section, we discuss experimental results of applying curriculum sampling to the problem of

quantile estimation and evaluate some of the core ideas discussed in this chapter. We first give an

overview of the setup including the cost distribution used, then present and analyze the results.
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3.4.1 Setup

For quantile estimation experiments, we constructed a one-dimensional discrete distribution that

the random variable X is sampled from and considered the identity function as the cost function

c, that is, c(X) = X. We created the cost distribution in such a way that it has most of its mass

concentrated around a low cost region with a long, thin tail with a few peaks in regions of high costs.

In particular, we first created a continuous distribution of the desired shape, computed the densities

for a chosen discrete support, and normalized the values to construct a discrete distribution over

the support. The support of the discretized distribution used was the set of numbers between 0.0

and 25.0, inclusive, that are 0.05 apart, that is, {0.0, 0.05, . . . , 24.95, 25.0}.
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Figure 3.4: A discrete cost distribution with 0.99-quantile.

The continuous distribution used is a mixture distribution of a log normal distribution with log-

mean 0.0 and scale 1.0, a Gaussian with mean 10.0 and variance 1.0, and a Gaussian with mean

20.0 and variance 1.0 with mixture weights of 0.9, 0.07, and 0.03, respectively. Specifically,
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exp

(
− (x− 20)2

2

)
. (3.20)

For discretizing this mixture distribution, we chose the support to be the set of numbers between 0.0

and 25.0, inclusive, evenly distanced by 0.05, and normalized the corresponding densities to create

a valid probability mass function. Intuitively, the log normal component describes the mass concen-

trated in a low cost region and the Gaussians the two peaks in high cost regions. See Figures 3.4

for an illustration.

Given this distribution, quantiles of which we want to estimate, we evaluated the curriculum

sampling algorithm in terms of variance reduction and estimation accuracy for the following cases:

• Using fixed sigmoid probability functions.
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• Using sigmoid probability functions with fixed slope and adaptive mean at ˜VaRα.

• Using sigmoid probability functions with adaptive slope and adaptive mean at ˜VaRα.

For the cases of adaptive slope and/or mean, we also examined the effect of the frequency of updates

on the convergence behavior. To estimate the variance of the estimators, we ran 10 trials of each

experiment and report the results.

3.4.2 Results and Analysis

Fixed Proposals

Figure 3.5 compares the simple Monte Carlo and the importance sampler with fixed sigmoid prob-

ability functions for estimating the 0.99-quantile of the cost distribution, which can be directly

computed from the distribution and is 20.5.
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(a) Sigmoid with µ = 20.0 and s = 4.0 (1A).
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(b) Sigmoid with µ = 25.0 and s = 4.0 (1B).
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(c) Sigmoid with µ = 10.0 and s = 4.0 (1C).

Figure 3.5: Convergence of fixed mean and slope.

Note that when the sigmoid function is located near the true quantile, the importance sampler

converges quickly even with a few tens of samples and exhibits a significantly smaller variance than
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the Monte Carlo estimator. In comparison, when the sigmoid function is located beyond the true

quantile so that we favor samples in a more extreme tail region than desired, the importance sampler

exhibits a relatively larger variance and requires drawing more samples before convergence. This

demonstrates the potential issue discussed in Section 3.3.2 in which, if the running quantile estimate

is not carefully used in a proposal such as the one in Eq. (3.13), the importance sampler could result

in a larger variance. Finally, if the sigmoid function is located far below the true quantile, we see a

larger variance as expected.

Adaptive Mean

Instead of using a fixed probability function, we can use the running estimate ˜VaRα to adaptively

change the mean of the sigmoid function and hence the proposal distribution, as we collect more

samples. Figure 3.6 shows convergence graphs of the importance sampler using a sigmoid probability

function initialized with µ = 10.0 and s = 4.0 and whose mean is updated every some fixed number

of steps to the running estimate ˜VaRα. It is more computationally expensive to update the function

more frequently, but it could more quickly adapt the probability function to be near the desired

location, though higher noise can be observed in the beginning.
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(a) Sigmoid with updates every 10 steps (2A).
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(b) Sigmoid with updates every 2 steps (2B).

Figure 3.6: Convergence of adaptive mean with initial µ = 10.0 and s = 4.0.

Note that compared to Figure 3.5, using adaptive mean exhibits a lower variance even when

the initial location is equally suboptimal in terms of its proximity to the true quantile with more

frequent updates possibly leading to even a lower variance.

Adaptive Mean and Slope

To better estimate the desired proposal, we can adapt the slope in addition to adapting the mean

based on the estimate ˜VaRα. In this experiment, we used a heuristic-based slope adaptation where

the slope is set such that the probability of the value one empirical standard deviation above the
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current mean is at 0.95. We also used a minimum slope of 2.0 for numerical stability to guard

against the curve from becoming overly steep due to a noisy variance estimate. Figure 3.7 shows

convergence graphs of the importance sampler with a sigmoid function initialized the same as before

and whose mean and slope are updated every some fixed number of steps.
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(a) Sigmoid with updates every 10 steps (3A).
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(b) Sigmoid with updates every 2 steps (3B).

Figure 3.7: Convergence of adaptive mean and slope with initial µ = 10.0 and s = 4.0.

Using adaptive slope exhibits a similar level of variance reduction as when only the mean is

adapted, though arguably slightly more noise can be observed at the beginning of the procedure.

This is presumably due to that we update the two parameters independently of one another, which

can be less desirable when the estimate ˜VaRα based on which we apply the adaptation is noisy. A

more sophisticated adaptation scheme in which we decide how to update multiple parameters as a

whole is conceivable.

Table 3.1 gives a summary of the experiments with the experiment identifiers given in the figures.

Table 3.1: Estimation of the 0.99-quantile using curriculum sampling.

Exp. n = 10 n = 30 n = 50 n = 100 n = 300

MC 11.725± 8.675 13.125± 7.525 16.375± 6.175 16.425± 6.125 19.900± 1.000

1A 20.075± 1.175 20.650± 0.800 20.450± 0.500 20.550± 0.350 20.500± 0.200
1B 15.150± 6.150 19.625± 1.225 20.400± 0.650 20.400± 0.400 20.525± 0.175
1C 16.000± 6.150 19.625± 1.275 20.250± 0.650 20.075± 0.725 20.525± 0.325

2A 20.250± 1.450 19.700± 1.600 20.600± 0.800 20.700± 0.600 20.550± 0.300
2B 18.700± 3.950 20.475± 0.925 20.250± 1.100 20.525± 0.425 20.575± 0.425

3A 17.075± 5.025 20.350± 0.600 20.150± 0.850 20.375± 0.725 20.475± 0.375
3B 16.650± 6.000 20.500± 1.450 20.250± 0.950 19.900± 0.850 20.175± 0.575
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3.5 Discussion

As discussed in this chapter, the idea of adapting the proposal distribution in importance sampling

based on previous samples is particularly desirable in case constructing an appropriate proposal a

priori is difficult. This may be the case, for instance, for estimating potential risks of black-box

systems, where we have limited understanding a priori to design a suitable importance sampler.

Extending this idea of proposal adaptation, we proposed a novel sampling framework called

curriculum sampling, where we approach a given problem using a series of proposal distributions

suitable for estimating the corresponding intermediate statistics in order to estimate the original

target statistics in a stable manner. For instance, this framework may be adopted for estimating

extreme tail statistics or a dependent set of such statistics. We presented an implementation of this

framework for estimating the risk measures VaR and CVaR, and demonstrated how a representation

of uncertainty can be incorporated into the sampling procedure to adapt the proposal distribution.

One note worth mentioning on the importance sampler presented for estimating Var and CVaR

is that, in case the random vector X comes from a continuous distribution, a more sophisticated

proposal than the one defined in Eq. (3.14) should be considered. This is because it is potentially

inefficient to sample directly according to Eq. (3.14) in the continuous case. It is still possible, for

instance, by using a type of rejection sampling, where we draw samples according to the nominal p

first then decide whether to accept or reject the samples based on the probability function. However,

this requires sampling from the nominal distribution, which essentially defeats the purpose of using

importance sampling for the estimation. To this end, approaches including using Gaussian kernel

function to design approximate proposals have been explored for quantile estimation as in Morio

[29].

In the following chapter, we apply the importance sampling ideas discussed in this chapter to es-

timate risks of sequential black-box systems. In particular, we consider methods from reinforcement

learning, which deals with the problem of sequential decision making under uncertainty, to design

an appropriate importance sampler.



Chapter 4

Risk Estimation of Sequential

Systems

This chapter introduces a search-based sampling algorithm that is suitable for evaluating sequential

decision making systems. In the first section, we briefly discuss the motivation behind assessing

risks of sequential systems. In the second section, we formalize the problem of estimating risks

of such systems and discuss how the importance sampling ideas from the previous chapter can be

adopted. The third section introduces an importance sampler based on a tree search algorithm that

can be applied to this estimation problem. We then present experimental results to demonstrate

the algorithm and close with a discussion.

4.1 Introduction

Sequential decision making is concerned with developing a system (or an agent) that is capable of

making decisions typically under some source of uncertainty over a series of discrete time steps so

as to maximize gains. Many problems of practical interest are naturally formulated as sequential

decision tasks [2], and an extensive body of work exists on the methods for solving such problems

including a range of reinforcement learning (RL) algorithms [23].

Recent advances including use of deep neural networks for function approximation and repre-

sentation learning [27] allowed scaling RL to problems previously considered intractable [1], and

increasingly more of such learning-based autonomous systems are being developed for real-world

applications such as autonomous driving [21]. Rigorous safety evaluation of these systems is there-

fore becoming increasingly important. In this chapter, we present methods for efficiently evaluating

risks of such sequential systems using a tree search-based algorithm, using the importance sampling

approaches discussed in the previous chapter.

26
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4.2 Sequential Systems

In a sequential task, a decision making system is trained to act in a given environment through a

series of interactions in order to maximize the rewards received. Such a sequential task is generally

formulated as a Markov decision process (MDP) with the goal of learning a policy π : S → A,

that is, a mapping from the state space to action space, so as to maximize the expected return (see

Section 2.4). Given a sequential system that has been trained, our task is to estimate risks of the

system in presence of disturbances to the states that the system observes. We formulate this task

also as an MDP and present a tree search algorithm for solving it.

4.2.1 Adversarial MDP

Consider a system that has been trained to solve a sequential taskM with state and action spaces

S and A, respectively. Suppose that the environment to which the system is deployed has sources

of state-dependent disturbances such that a random disturbance X drawn according to probability

density p(x | s) is applied to the state s ∈ S that the system observes. Given this noisy state s,

the system chooses an action a ∈ A based on its learned policy π, and transitions to the subsequent

state according to the transition model T of the environment. Hence, at each time step t,

xt ∼ p(x | st), at = π(st + xt), st+1 ∼ T (s′ | st, at). (4.1)

The process continues until the system reaches a terminal state sn ∈ Sterm producing a trajectory

τ = {s1, x1, . . . , xn−1, sn} and incurring a cost c(τ). In case of autonomous driving, for instance,

the disturbance could be noise added to system sensors and the cost the expected cost of a collision

due to a series of such sensor disturbances applied to the system. See [13] for a similar but more

formal formulation of the safety validation problem.

Given a model of state-dependent disturbances, our goal is to understand the distribution of

the cost induced by the disturbance distributions, and to efficiently estimate relevant risk measures.

This estimation task can itself be treated as a sequential task and be formulated as what we call an

adversarial MDPMadv defined by the following components:

• A set of states Sadv equivalent to S.

• A set of actions Aadv of the state-dependent disturbance distributions.

• A transition function Tadv(s
′ | s, a) = T (s′ | s, π(s+ a)), where s ∈ Sadv and a ∈ Aadv.

• A reward function designed based on the definition of cost for the given application.

Note that solving for the taskMadv in the canonical sense would be developing a system that has

learned to make sequential decisions (disturbances to apply) in order to maximize the cost. While
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common RL methods can be applied to this MDP to estimate the worst-case cost, we are interested

in estimating more subtle tail measures such as VaRα and CVaRα. Moreover, for efficient estimation,

the importance sampling methods discussed previously are natural to adopt for the sequential setting

considered.

4.2.2 Importance Sampler

Given a state-dependent nominal distribution p(x | s) over disturbances, we have the following

distribution over trajectories (the corresponding sequences of disturbances)

p(τ) ∝
n−1∏
t=1

p(xt | st), (4.2)

which induces a distribution over the cost associated with the trajectories. The goal is then to

construct a proposal distribution q(x | s), and hence q(τ), in order to efficiently compute VaRα and

CVaRα of the cost distribution.

The results from Section 3.3.1 lead to the following proposal distributions that we can use to

design importance sampling estimators

qVaRα(τ) ∝ p(τ) · 1{c(τ) ≥ VaRα} (4.3)

qCVaRα
(τ) ∝ p(τ) · (c(τ)−VaRα) · 1{c(τ) ≥ VaRα}. (4.4)

However, the above proposals depend on the unknown VaRα, and the indicator functions as used

above could in practice lead to biased estimates. We instead use the approximate proposals

qVaRα
(τ) ∝ p(τ) · P (c(τ) ≥ VaRα) (4.5)

qCVaRα
(τ) ∝ p(τ) · (c(τ)− ˜VaRα) · P (c(τ) ≥ VaRα), (4.6)

where ˜VaRα is the running estimate of VaRα and the probability function defined as in Eq. (3.18).

See Section 3.3.2 for more discussion on why such approximate proposals are used.

Finally, the state-dependent proposal q(x | s) that would result in the distributions over trajec-

tories above is given by

q(xt | st) =
p(xt | st) ·Q(st, xt)

Ep[Q(st, X)]
, (4.7)
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where

Q(xt, st) =


P (c(τ) ≥ VaRα) if st ∈ Sterm and for VaR

(c(τ)− ˜VaRα) · P (c(τ) ≥ VaRα) if st ∈ Sterm and for CVaR

Ep[Q(st+1, X)] otherwise

(4.8)

It is straightforward to verify this by computing a product similar to the one in Eq. 4.2. Given a

trajectory τ , the corresponding importance weight is then

w(τ) =
p(τ)

q(τ)
=

n−1∏
t=1

p(xt | st)
q(xt | st)

. (4.9)

Having derived the target state-dependent proposals to use, we next discuss a search-based

sampling method for approximating the distributions.

4.3 Tree Importance Sampling

Monte Carlo tree search (MCTS) [15] is a heuristic algorithm that builds a search tree based on

random sampling in the decision space that is used to approximate optimal decisions in a given

domain [6]. It has had a profound impact on a range of applications, especially on sequential decision

tasks such as AI games. In this section, we discuss some of the core ideas of the algorithm and discuss

how they can be adopted to design an importance sampler used to assess risks of sequential systems.

4.3.1 Monte Carlo Tree Search

In MCTS, the true value of an action in a given state is approximated using random simulations.

Based on these values, the strategy used to search over the decision space is adapted to efficiently find

optimal actions. At a conceptual level, this is similar to the basic idea behind adaptive importance

sampling in which the proposal distribution is adjusted based on previous samples for efficient

estimation. The results of the random simulations are stored in a tree, and the stored estimates

become increasingly accurate as the algorithm progresses. The tree is built in an iterative manner

until some computational budget such as a maximum time, or number of iterations is exhausted.

Each iteration consists of the following four steps:

1. Selection: Traverse the tree to find the most promising node to expand according to some

chosen selection policy starting from an initial state node.

2. Expansion: Add one or more child nodes to the tree based on the possible actions from the

selected node.
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Figure 4.1: One iteration of Monte Carlo tree search.

3. Rollout: Run a simulation from the new node(s) according to some chosen rollout policy and

evaluate the outcome.

4. Backpropagation: The result from the rollout is backpropagated through the sequence of

selected nodes to update the statistics stored in the nodes.

Note that there are two distinct policies in play: selection policy and rollout policy. The selection

policy defines how a leaf node is selected from the existing nodes in the tree for expansion. Since we

want to explore more promising part of the decision space, the selection policy is typically designed

such that it incorporates some measure of utility suitable for the application at hand. In case of the

upper confidence bound for trees (UCT) [24], which is one of the most popular MCTS algorithms,

the selection of child of node v is treated as an independent multi-armed bandit problem, and a

child node v′ that maximizes the following quantity is chosen

UCTv′ =
Q(v′)

N(v′)
+ c

√
2 lnN(v)

N(v′)
, (4.10)

where Q(v′)/N(v′) is an empirical mean of the rewards received with v′ selected, c the exploration

constant, N(v) the total number of times the parent node has been selected, and N(v′) the total

number of times v′ has been selected. This formulation based on multi-armed bandit allows us to

address the problem of exploration-exploitation with the exploration constant used to configure how

the algorithm balances between the two [24]. In case of estimating risk measures, we can design

a selection policy that biases the search towards sampling from the desired tail region in order to

reduce the variance of the estimator. The rollout policy, on the other hand, defines how a simulation

is run from the chosen non-terminal node to estimate its value. A simple rollout policy would be to

choose an action uniformly at random from each state during a simulation.

Beyond the basic MCTS algorithm, an extensive set of variations have been studied, for instance,

to apply the algorithm to problems with continuous decision space [14], or to parallelize simulations
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to take advantage of multi-core hardwares [11].

4.3.2 Tree Search as Sampling

While the canonical use of MCTS is for finding optimal actions in a given state, it can also be

adapted as a sampling method. Canevet et al. [8], for instance, proposes a tree-based algorithm

inspired by MCTS that is used to sample training examples based on some importance weights to

more efficiently train machine learning models. We now discuss an MCTS-based algorithm that

implements the importance sampler considered in Section 4.2.

Given an instance of adversarial MDP Madv, random simulations are used to approximate the

true cost associated with each state-dependent disturbance. The search tree built consists of nodes

each representing a state that the system under test has reached following some number of transitions

starting from an initial state. For a state node s, each branch represents a possible disturbance from

that state, that is, x ∈ supp(p(x | s)). Based on simulation results, we compute an empirical

estimate of Q(s, x) in Eq. (4.7) and use it to approximate the state-dependent proposal q(x | s). In
case of discrete, finite disturbances, the proposal is approximated as

q(x | s) ≈ p(x | s) · Q̃(s, x)∑
x′∈X p(x′ | s)Q̃(s, x′)

. (4.11)

This approximate proposal defines our selection policy, and for rollout we use a simple random

rollout.

In short, in one iteration of simulation, we start from some initial state and traverse the tree

according to the selection policy defined by the approximate proposals. Once we reach a terminal

state, we compute the cost associated with the trajectory followed and backpropagate the result

through the tree. Based on the result, we update the state-dependent proposals to increase the

chance of sampling from the desired tail region of the cost distribution. As the approximate proposals

depend on the running estimate ˜VaRα that could be noisy at the beginning, several of the extensions

discussed in Section 3.3.3 such as having an initial burn-in period can be additionally employed to

improve stability of the procedure. Algorithm 4.1 outlines a high-level summary of the approach.

4.3.3 Parallelization

Monte Carlo methods are often easily parallelizable so that complex problems that require a large

number of samples can be made amenable to the sampling-based methods through parallel com-

puting. There are several approaches to adding parallelism to MCTS which can accelerate the tree

importance sampling algorithm discussed above. Depending on the part of the algorithm that is

parallelized, there are three common methods: leaf parallelization, root parallelization, and tree

parallelization [10, 11].
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Algorithm 4.1 Tree importance sampling.

function TreeSampling(s0, N) ▷ Initial state, no. of samples
S ← {} ▷ Collection of samples
for i← 1 to N do

s′, c′, w′ ← Select(s0)
c, w ← Rollout(s′, c′, w′)
S ← S ∪ {(c, w)}
Backprop(s′, c,S)

return S

function Select(s) ▷ Initial state
c, w ← 0, 0
while !isterminal(s) do

s′, x′, c′ ← SampleDistrubance(q(x | s), s) ▷ Use approximate proposal
c, w ← c+ c′, weight(w, x′)

s← s′

return s, c, w

function Rollout(s, c, w) ▷ State, cost, weight
while !isterminal(s) do
Drollout ← p(x | s) or U ▷ Use nominal or uniform random
s′, x′, c′ ← SampleDistrubance(Drollout, s)
c, w ← c+ c′, weight(w, x′)

return c, w

function SampleDisturbance(D, s) ▷ State-dependent distribution, state
x′ ∼ D ▷ Draw a random disturbance
s′, c′ ∼ Tadv(s

′ | s, x′) ▷ Transition to next state
return s′, x′, c′

function Backprop(s, c,S) ▷ State, cost, collection of samples
˜VaRα ← var_alpha(S) ▷ Re-approximate VaRα

while !isnull(s) do
N(s)← N(s) + 1
Q(s)← Q(s) + c
Re-approximate q(x | s) with ˜VaRα using Eq. (4.11)
s← parent of s

return s

Parallel MCTS

In leaf parallelization, one thread is used in the selection phase to choose a leaf node to expand, and

multiple independent simulations are run in parallel using the available threads starting from the

chosen node. Once all simulations finish, a single thread is used to backpropagate the results through

the tree. Despite the simplicity, having to wait for all simulations to finish before backpropagating
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the results can be a significant bottleneck, and running simulations starting from a single leaf node

can lead to exploring only a limited part of the search space.

Root parallelization is another method that is relatively simple to implement. In this method,

multiple search trees are built independently by the available threads, and when the computational

budget is exhausted, the trees are merged together in order to combine the statistics. This method

addresses some of the shortcomings of leaf parallelization, but the threads still do not share their

intermediate simulation results, and hence, it is possible for the threads to duplicate efforts.

Lastly, in tree parallelization, one search tree is simultaneously accessed by the threads, each

independently selecting a node to expand, running a simulation, and backing up the results in

the tree. To prevent potential data corruption due to multiple threads accessing the same part

of the tree, a locking mechanism is typically implemented at the node level. Moreover, what is

called virtual loss is often used to adjust the scores of those nodes that have been selected by other

threads in order to encourage the threads to explore more broadly across the search space. This

has been reported to often significantly improve scalability [11]. In some domains, updates applied

by multiple threads are performed lock-free to maximize scalability, accepting that occasional race

conditions are possible. This approach is conceivable if such race conditions are expected to be rare,

or the potential data corruptions are not expected to significantly change the outcome of the search

(e.g., the action considered to be optimal). For instance, this lock-free implementation was used in

AlphaGo [37].

Parallel Sampling

For the tree importance sampler, we use a type of tree parallelization with a node-level locking

mechanism to prevent potential data corruption of the node statistics. The lock-free approach may

make more sense for the canonical use of MCTS of estimating optimal actions, especially when

such collisions are expected to be infrequent. In case of the importance sampler, however, the node

statistics are used to define the proposal distribution, and, hence, it is important to ensure data

consistency for the sampling use case. Each thread runs an independent iteration of the sampling

procedure with the following steps:

1. Using the samples collected thus far, compute the needed estimates such as VaRα.

2. Traverse the tree according to the selection and rollout policies with the computed estimates

until a terminal state is reached.

3. Compute the associated cost and store the sample with the corresponding weight.

This type of parallelization is especially useful for problems for which estimating costs at terminal

states is computationally expensive but can be run in parallel.
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4.4 Experiments

In this section, we discuss a set of experiments in which we apply the tree importance sampling

algorithm to the problem of risk estimation in a sequential setting. We start with an overview of

the setup, then present and analyze the results.

4.4.1 Setup

Gridworld is a classic RL problem in which the environment is a grid consisting of contiguous cells

each with an associated reward or cost (that maybe zero) [39]. An agent starts from some initial

cell and navigates through the environment collecting rewards until reaching one of the terminal

states. The goal of the agent is to maximize the discounted sum of rewards collected, and a range of

RL methods can be applied to this sequential task. Given an agent that has been trained, we want

to estimate potential risks associated with deploying the agent to a similar environment but with

state-dependent disturbances.

Gridworld MDP

We used a gridworld MDP of size 20×20 with the states and associated rewards as given in Table 4.1.

For terminal states, we used a mix of positive and negative rewards, and, for non-terminal states,

we used negation of random rewards drawn from a uniform distribution over [0, 1). The probability

of a successful transition according to the selected action (called transition probability) was set to

0.7. Lastly, a discount factor of 0.95 was used.

Table 4.1: Gridworld MDP states.

State Reward Terminal

(4, 3) −10.0 Y
(4, 6) −5.0 Y
(9, 3) 10.0 Y
(8, 8) 3.0 Y
(16, 18) −30.0 Y
Others −U[0,1) N

To develop an agent to evaluate, we applied the Deep Q-network (DQN) algorithm where a

neural network is used as a function approximator of the Q-function to the gridworld MDP (see

Section 2.4). The input, which is the state represented as a pair of numbers, is mapped to a latent

vector of size 32 that, following a ReLU activation, is then mapped to an output vector of size

4. The output vector represents the learned Q-values that correspond to the four possible actions

(right, left, up, down). The agent was trained for 5M iterations using an ϵ-greedy policy as the

exploration strategy with the value of ϵ linearly decayed from 1.0 to 0.1 over the first half of the

training. Standard approaches such as using a replay buffer to store and sample transitions were
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used. Once the algorithm converged, we constructed a policy based on the learned Q-function that

maps each state to the action with the highest Q-value. Instead of the DQN algorithm, a simpler

RL method such as value iteration could also have been used to train an agent for this relatively

simple environment.

Adversarial MDP

For an adversarial MDP, we need to define the set of actions, which are the state-dependent distur-

bance distributions, and a reward function that is appropriate for the evaluation task. The set of

states and the transition function are defined based on the original MDP as discussed in Section 4.2.1.

For state-dependent disturbances, we used the following distribution for every state

∀s ∈ Sadv, p(x | s) =

0.90 for x = (0, 0)

0.025 for x ∈ {(3, 0), (0, 3), (−3, 0), (0,−3)}

In words, with 90.0% chance, the agent observes the true state it is in, and with 2.5% chance it

observes one of the four states that is of distance 3 away from the true state. For the reward function

(or the cost), we took each state with a negative reward in the original MDP and used the absolute

value of the reward for the adversarial MDP. For states with positive rewards, we used reward of 0

for the adversarial MDP. Intuitively, in this setup, we are concerned more about the agent’s reaching

cells with negative rewards in the original MDP but indifferent to its reaching cells with positive

rewards.

4.4.2 Results and Analysis

For both the Monte Carlo baseline and importance sampling experiments, we used the cell (10, 10)

as the initial state and report the estimates of VaRα and CVaRα for α ∈ {0.90, 0.95, 0.99} computed

over 3 runs. Note that in this sequential setting, neither the distribution over trajectories nor the

cost function are known explicitly. Hence, the true values are estimated based on samples collected

from Monte Carlo simulations.

Table 4.2: Hyperparameters used for the gridworld importance sampler.

Hyperparameter Value

maximum depth 100
exploration constant 3.0
rollout strategy nominal
minimum slope 5.0
weight schedule linear from 1.0 to 0.95 over 500k steps

For the importance sampler, we used adaptive mean and slope, where the location of the sigmoid
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probability function is adapted based on the running estimate of VaRα and the slope based on

the empirical variance of the estimates. For numerical stability, a minimum slope was used to

prevent the curve from becoming overly steep due to a potentially noisy empirical variance. See

Section 3.4 for a similar set of experiments for quantile estimation. To estimate both VaRα and

CVaRα simultaneously, we used the mixture distribution as defined in Eq. (3.19). The mixture

weight λ was adjusted based a schedule in which it is initially set to 1.0 and linearly decayed to 0.95

over the first 500k iterations. Such a schedule was used in order to first have an accurate estimate

of VaRα before sampling more narrowly from the estimated tail region. Lastly, we used the nominal

distribution as the rollout strategy, which had somewhat less variance than the uniform rollout in

the beginning. When converged, however, both strategies resulted in similar estimates. Table 4.2

summarizes the set of hyperparameters used for the experiments.
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Figure 4.2: Estimation of VaRα and CVaRα for gridworld.

Figure 4.2 shows convergence graphs of the Monte Carlo baseline and the importance sampler for

estimating the risks for α ∈ {0.90, 0.95, 0.99}. Overall, the importance sampler had a larger variance

than the baseline in the beginning (i.e., 102 samples), when there is a higher degree of uncertainty



CHAPTER 4. RISK ESTIMATION OF SEQUENTIAL SYSTEMS 37

about the estimates of the expected costs, or the Q-values, associated with the disturbances. The Q-

values become more accurate as more samples are collected, and the variance of the estimator quickly

reduces even at 103 samples. For the experiments, we assumed no prior knowledge on the potential

costs associated with the disturbances and initialized the Q-values to zeros. In case some domain

knowledge is accessible, the Q-values can be better initialized in order to speed up convergence and

so to more quickly reduce the variance of the estimator. This is indeed a general strategy commonly

used to configure MCTS for faster convergence. Beyond 103 samples, the Monte Carlo baseline also

converged with a similar level of variance as that of the importance sampler. Table 4.3 and Table 4.4

summarize the results of the experiments for VaRα and CVaRα, respectively.

Table 4.3: Estimates of VaRα with α ∈ {0.90, 0.95, 0.99} for gridworld.

Exp. α n = 102 n = 103 n = 104 n = 105

MC 0.90 12.404± 1.456 11.993± 0.552 12.098± 0.077 12.017± 0.029
0.95 13.935± 1.158 14.123± 0.583 13.906± 0.112 13.911± 0.046
0.99 20.809± 3.142 17.984± 1.401 18.246± 0.148 18.074± 0.075

IS 0.90 12.063± 0.960 11.673± 0.146 12.045± 0.117 12.019± 0.047
0.95 14.349± 1.796 13.252± 0.181 13.851± 0.134 13.911± 0.046
0.99 17.826± 4.867 17.712± 1.189 18.008± 0.474 18.106± 0.048

Table 4.4: Estimates of CVaRα with α ∈ {0.90, 0.95, 0.99} for gridworld.

Exp. α n = 102 n = 103 n = 104 n = 105

MC 0.90 14.512± 1.320 14.703± 0.755 14.777± 0.121 14.682± 0.040
0.95 16.153± 1.176 16.509± 0.996 16.630± 0.169 16.513± 0.043
0.99 20.809± 3.142 19.881± 2.065 20.898± 0.437 20.656± 0.007

IS 0.90 13.968± 2.033 14.054± 0.245 14.695± 0.196 14.683± 0.045
0.95 15.780± 3.123 15.724± 0.350 16.545± 0.259 16.519± 0.048
0.99 17.826± 4.867 19.325± 0.964 20.458± 0.478 20.530± 0.094

4.5 Discussion

In this chapter, we extended the importance sampling ideas from the previous chapter to the se-

quential setting in which the goal is to estimate potential risks of a sequential system in presence

of state-dependent disturbances. This, for instance, can be applied to evaluating an autonomous

vehicle system given random noise to the sensors.

We formulated this estimation problem as an instance of MDP where the set of actions correspond

to the disturbance distributions and the rewards to the relevant costs. We then presented an MCTS-

based importance sampling algorithm that iteratively estimates the expected costs associated with

the disturbances, based on which samples are drawn to estimate the risk measures of interest. Despite
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that the sequential setting considered involves the extra challenge of simultaneously learning the

expected costs of actions and adapting the proposal distribution, we experimentally demonstrated

that the algorithm can be employed as a variance reduction method for the estimation problem.

Lastly, we briefly discussed possible approaches to adding parallelism in order to scale the algorithm

to problems in which measuring the costs is computationally expensive.

Although in the experiments we considered a fixed initial state from which the algorithm was

run, initial state itself can be naturally included as part of the input vector such that we additionally

consider a distribution over initial states in estimating risks. For instance, if we have some domain

knowledge regarding which initial states are more or less likely than others for the given sequential

system under test, this distribution could be incorporated in the design of the adversarial MDP to

estimate more informative risk measures.

In designing the tree importance sampling algorithm discussed in this chapter, we used the

proposal distributions that we have shown could lead to lower variance estimates of VaRα and

CVaRα. The distributions, in particular, were used to design the action selection strategy of the

sampling algorithm. For other similar estimation problems, we could use alternative distributions

to design action selection strategies more appropriate for the given problems. It is worth noting,

however, that while having the algorithm favor a more relevant part of the search space is desirable,

it is also important to ensure a sufficient level of exploration by not allowing the probability of

reaching a different part of the space converge to zero. Otherwise, it could lead to biased estimates

of the quantities of interest. This also justifies using some representation of uncertainty about

the estimates in designing the proposal distributions, as we have done for the importance sampler

considered in this work.



Chapter 5

Applications

This chapter discusses the search-based importance sampling algorithm previously introduced as

applied in risk estimation and validation of autonomous vehicle (AV) policies in simulation. The

first section gives a brief introduction to the type of application considered in this chapter. The

second section discusses in detail the experiment setup, the open-source software tools used, and

the results. The third section concludes the chapter with a discussion on possible extensions of the

application to other policy types and environments.

5.1 Introduction

Given a system under test, we generally want to evaluate the system’s performance on the types

of environments to which the system is expected to be deployed. In case of an AV policy, such an

environment (or scenario) typically consists of a set of components such as the road condition, the

weather condition, and the type of other actors involved in the scene. Each of these components, in

turn, can be defined by a set of parameters that take on different values with different probabilities.

For instance, given a particular road condition, we might expect to see certain types of vehicles to

be present more than others.

Given the sequential dependencies among such components, we formulate the selection of param-

eter values as a sequential decision-making task and apply the importance sampling algorithm to

efficiently evaluate the given AV policy across the scenarios considered. The goal is to estimate the

potential risks associated with an AV policy across a space of scenarios that we care about. Using

the importance sampling algorithm, we explore the space of scenarios and simulate the AV policy in

each of the scenarios selected. As the algorithm progresses, it gradually biases the search towards

the part of the space deemed most relevant to estimating VaR and CVaR of the cost distribution.

39
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5.2 Experiments

In this section, we discuss the details of the experiments run including the space of scenarios con-

sidered, the AV policy evaluated, and the software packages used.

5.2.1 Setup

For each experiment, we effectively repeat the following two steps until convergence or the maximum

number of iterations is reached:

1. Selection of the scenario parameter values.

2. Simulation of the AV policy in the selected scenario to compute the associated cost.

Our goal is to estimate such metrics as VaR and CVaR of the cost distribution that is induced by

the distribution over the scenario parameters as efficiently as possible. We demonstrate that the

importance sampling algorithm can achieve better sample efficiency than simple Monte Carlo in this

estimation task.

Note that the overall framework is modular in the sense that it does not depend on specific

choice of the cost metric or the driving simulator. Instead, as long as the chosen simulator allows

simulating the given AV policy in the selected scenario to compute the chosen cost metric, the

proposed framework can be naturally adopted. For the experiments introduced in this chapter, we

used an open-source software called CARLA [17] for simulating autonomous driving and impact

force as the cost metric. See [30] for a presentation of a similar but more extensive risk assessment

framework.

The main framework is implemented primarily in Julia language [5] with the client code that

connects to the CARLA backend written in Python. The AutonomousRiskFramework.jl1 package

implements the client that communicates with CARLA to simulate the given AV policy in different

scenarios. The ParallelTreeSampling.jl2 package implements the core tree importance sampling

algorithm used to search over the space of scenarios.

Scenarios

Choosing the space of scenarios to search over is a design choice to be made depending on the

environments in which the AV policy is expected to be used. In our experiments, the search space

consisted of the type of driving scene with an actor (e.g., car or pedestrian), the maximum speed

of the ego vehicle, and the maximum brake it can apply. For driving scenes, we considered the

following four scenes.

1https://github.com/sisl/AutonomousRiskFramework.jl
2https://github.com/kykim0/ParallelTreeSampling.jl

https://github.com/sisl/AutonomousRiskFramework.jl
https://github.com/kykim0/ParallelTreeSampling.jl
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Figure 5.1: CARLA driving simulator.

• FollowLeadingVehicle: The ego vehicle follows a leading actor (a car or a motorcycle) that

gradually slows down and comes to a stop.

• DynamicObjectCrossing: An actor (a bicycle or a pedestrian) suddenly moves into the way

of the ego vehicle, which has to stop at that moment.

• VehicleTurningRight: The ego vehicle takes a right turn and an actor (a bicycle or a pedes-

trian) suddenly moves into its way, and it needs to stop accordingly.

• OtherLeadingVehicle: The ego vehicle follows a leading actor (a car or a motorcycle) that

decelerates so that it has to change lane to avoid a collision.

More details on the scene types can be found in the official CARLA documentation. For the max-

imum speed of the ego vehicle, we considered the values {10, 20, 30, 40, 50}. The maximum brake

is a scalar in the range [0.0, 1.0] that controls the vehicle brake, and we considered the values

{0.1, 0.2, 0.3, 0.4, 0.5}. In selecting the scenario parameter values, we first choose the scene type,

then the maximum speed of the ego vehicle, and then finally the maximum brake. The nominal

distribution over the possible values for each component is uniform. That is, simple Monte Carlo

would sample a value uniformly at random for each of the scene type, the maximum speed, and the

maximum brake.

Once we finish selecting all parameter values, we simulate the given AV policy in the selected

scenario using CARLA. The simulation is run without additional disturbances, for instance, to the

sensors of the ego vehicle. In case of a collision, the associated impact force is returned, which is

used as our cost metric.

Autonomous Vehicle Policy

A driving agent in CARLA manages the ego vehicle by controlling such parameters as the vehicle

throttle, brake, and gear based on it policy. The AV policy used in our experiments in built on top
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of a basic agent implementation provided by the CARLA API and has the additional logic to detect

imminent collisions based on the GNSS data and to apply brake accordingly.

Situated in a scenario, the agent based on the AV policy devises a high level plan of route

consisting of a series of waypoints to follow to reach the given destination. This global planning is

done using the A∗ search algorithm with a distance heuristic [36], and a parameter that controls

the sampling resolution determines the granularity of the waypoints. In following the trajectory

of waypoints, two PID controllers (for the lateral and longitudinal controls) are used to control

the low level motion of the ego vehicle, with additional local waypoints dynamically generated

as needed. The implementation of this agent that we call the GNSS agent is available in the

AutonomousRiskFramework.jl package.

5.2.2 Results and Analysis

For both the baseline and the importance sampler, we estimated VaRα and CVaRα for α = 0.99

over 3 runs each using a different random seed in order to evaluate convergence as well as variance.

Table 5.1: Hyperparameters used for the scenario importance sampler.

Hyperparameter Value

exploration constant 10,000.0
rollout strategy nominal
minimum slope 100.0
weight schedule linear from 1.0 to 0.90 over 1k steps

We used a similar importance sampler as that used in the previous chapter. In particular, we

used adaptive mean and slope, with the location of the sigmoid probability function adapted based

on the running estimate of VaRα and the slope based on the empirical variance. Similarly as before,

a minimum slope was used to achieve better numerical stability. To estimate both quantities more

efficiently, the mixture distribution as defined in Eq. (3.19) was used, with the weight linearly decayed

to gradually favor sampling from the estimated tail. The set of hyperparameters used is summarized

in Table 5.1

Figure 5.2 shows convergence of the simple Monte Carlo baseline and the importance sampler for

estimating VaRα and CVaRα of the cost associated with the GNSS agent. Overall, the importance

sampler achieved smaller variance than the baseline, particularly in CVaRα estimation. In the early

part of the procedure when the importance sampler had more incentives to explore the parameter

space, its VaRα estimate was somewhat higher than what it eventually converged to. It was able

to, however, adjust its estimate fairly quickly with additional samples to achieve a lower variance

estimate, particularly of CVaRα, than the baseline. Table 5.2 summarizes the VaRα and CVaRα

estimates computed by the two approaches.
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(b) CVaRα with α = 0.99.

Figure 5.2: Estimation of VaRα and CVaRα with α = 0.99 for the GNSS agent.

Table 5.2: Estimates of VaRα and CVaRα with α = 0.99 for the GNSS agent.

Exp. n = 100 n = 300 n = 500 n = 1,000 n = 2,000

MC-VaRα 55, 564± 5, 343 46, 631± 9, 241 43, 805± 6, 415 39, 060± 11, 161 37, 371± 8, 750
MC-CVaRα 55, 564± 5, 343 55, 897± 8, 035 53, 742± 6, 175 50, 087± 6, 878 50, 865± 5, 552

IS-VaRα 53, 103± 2, 882 36, 656± 4, 832 40, 851± 5, 267 36, 631± 4, 861 37, 477± 2, 019
IS-CVaRα 53, 320± 3, 099 46, 036± 2, 706 50, 957± 1, 802 50, 324± 2, 148 50, 855± 1, 756

5.3 Discussion

In this chapter, we demonstrated an application of the tree importance sampling algorithm intro-

duced in Chapter 4 to risk estimation of an AV policy treated as black-box in simulation. In case

the goal is to evaluate an AV policy across scenarios defined by a set of parameters, values of which

are natural to be chosen in sequence, we can formulate the parameter selection as an instance of

MDP and apply the tree importance sampling algorithm to estimate VaR and CVaR of the cost

distribution induced by that over the scenarios. In particular, we simulated the GNSS agent across

a space of scenarios defined by the driving scene, the maximum speed of the ego vehicle, and the

maximum brake in order to collect cost samples and to compute the associated risk metrics in a

sample efficient manner.

Note that the nature of the application explored in this chapter is somewhat distinct from that of

the experiments considered in Chapter 4. Previously, we applied the importance sampling algorithm

to an MDP where the action is a set of possible disturbances to the state observed by the system

under test. Using the algorithm on such an MDP, we would be estimating the risk metrics of the

cost distribution induced by the stochastic disturbances applied to the system. In this chapter,

on the other hand, we applied the algorithm to an MDP where the action is a set of possible

values for the relevant scenario component. In this case, we would be estimating the risk metrics

of the cost distribution induced by that over the scenario components considered. Given that the
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algorithm is based on MCTS, which is a generic RL solver, it can be naturally adopted in similar

risk estimation applications if the cost distribution of interest is one that is induced by stochastic

sequential decisions.

For the experiments presented in this chapter, we considered a relatively simple AV policy that

utilizes GNSS input to detect potential collisions. We can easily extend the application to more

complex AV policies such as the ones that use image input. Also, we can consider additional

scenario components such as weather condition that can plausibly be relevant to such image-based

agents [30].



Chapter 6

Conclusions

The nature of intelligent systems developed for real-world applications has evolved from one that

involves hand-designed heuristics based on domain knowledge to one that is learned from data.

These learning-based systems often demonstrated significant improvement in performance over the

heuristic-based counterparts but are typically highly complex and treated as a black-box in practice.

In this thesis, we proposed several adaptive algorithms for efficiently estimating risks of such black-

box systems. This chapter summarizes the approach explored in this work with a brief discussion

on potential directions for further research.

6.1 Summary

Given a black-box system to evaluate, we need to carefully design the distribution from which to

sample the input in order to develop an unbiased, sample efficient estimator of the risk measures

of interest. Inspired by the idea of adapting the sampling distribution from importance sampling,

we proposed a novel framework called curriculum sampling, which is designed to estimate a set of

dependent measures in a stable and sample efficient manner. We adopted the framework to design

an importance sampler to estimate the tail risk measures called VaR and CVaR, demonstrating the

approach on both sequential and non-sequential problems.

The first part of the thesis introduces and motivates the main research problem of focus (Chap-

ter 1) and discusses relevant preliminaries on importance sampling, the tail risk measures to esti-

mate, and the reinforcement learning framework (Chapter 2). The remainder of the thesis makes

the following contributions:

• A novel framework for efficient estimation of a set of dependent statistics. In

Chapter 3, we introduced a more advanced importance sampling technique called adaptive

importance sampling, where the sampling distribution is iteratively adapted based on previous

45
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samples to improve sample efficiency. Adopting this idea in estimating a set of dependent

measures, we proposed a novel framework called curriculum sampling that aims to achieve

sample efficiency while maintaining stability of the sampling procedure by decomposing a given

problem into a series of subtasks solved in order. Given some representation of uncertainty

on the running estimates, we decide how the distribution is adapted and whether the current

subtask can be considered solved. Using this framework, we implemented an importance

sampler for estimating VaR and CVaR and demonstrated it on a quantile estimation task.

• An adaptive algorithm based on MCTS for evaluating sequential systems. In Chap-

ter 4, we extended the adaptive importance sampler for estimating VaR and CVaR introduced

in the context of non-sequential settings to evaluating sequential decision-making systems. In

particular, we introduced a formulation of the problem of risk estimation of sequential sys-

tems in presence of state-dependent disturbances as an instance of MDP. We then proposed

an adaptive algorithm based on MCTS called tree importance sampling for estimating VaR

and CVaR of the cost distribution induced by that over the state-dependent disturbances. We

demonstrated the algorithm on a gridworld environment to evaluate a DQN agent as a system

under test.

• An application in evaluating autonomous vehicle policies in simulation. In Chap-

ter 5, we studied the problem of evaluating autonomous vehicle policies across a space of

scenarios in simulation. In case the scenario space of interest is defined by a set of parameters,

possible values of which are discrete and chosen in sequence, we introduced a formulation of

scenario selection as an instance of MDP. We then applied the tree importance sampling al-

gorithm to the MDP to estimate VaR and CVaR of the cost distribution associated with the

given AV policy across the space of scenarios.

6.2 Further Work

Curriculum sampling introduced in this thesis is a general adaptive algorithm framework that can

be adopted for estimating an arbitrary set of dependent statistics with different uncertainty repre-

sentations. In this work, we mainly focused on two particular tail statistics, VaR and CVaR, with

the estimate uncertainty represented using sigmoid-based functions. Applying the framework to

design adaptive sampling algorithms for estimating other risk measures and also with alternative

uncertainty quantification methods would be one interesting line of further research.

For sequential decision-making settings, we proposed an MCTS-based importance sampling al-

gorithm that can be used to evaluate sequential systems. In the formulation of the adversarial MDP,

we implicitly assumed discrete action space and demonstrated the importance sampling algorithm on

an MDP with discrete state-dependent disturbances. We can extend the algorithm to also support
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continuous disturbances, for instance, by adopting the progressive widening method that has been

used to allow MCTS to handle continuous action space [14].
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