I am a 3rd year Ph.D. student at the Algorithmic Intelligence Lab at KAIST AI. My research focuses on developing efficient and safe methods for enhancing, aligning, and personalizing generative models, with an emphasis on large language models. I have broad research interests, including generative models, reinforcement learning from human feedback, AI safety, and nature-inspired intelligence, among others. I always strive to more deeply understand the fundamental (mathematical) principles behind everything I work on, though it's a lot challenging in general :-)
Previously, I worked as a senior software engineer at Google, developing machine learning methods to localize Google Assistant for low-resource languages. I also worked in Display Ads, building the ads backend system and enhancing auction algorithms for improved user experience. I received an MS in computer science from Stanford University and a BS in computer science with a minor in applied mathematics from Cornell University.
Most recent publications on Google Scholar.
‡ indicates equal contribution.
Self-Refining Language Model Anonymizers via Adversarial Distillation
K. Kim‡, H. Jeon‡, J. Shin
arXiv preprint arXiv:2506.01420
Personalized Language Models via Privacy-Preserving Evolutionary Model Merging
K. Kim, J. Shin, J. Kim
EMNLP 2025
Mamba Drafters for Speculative Decoding
D. Choi, S. Oh, S. Dingliwal, J. Tack, K. Kim, W. Song, S. Kim, I. Han, J. Shin, A. Galstyan, S. Katiyar, S. B. Bodapati
EMNLP 2025 Findings
ICML 2025 Workshop on Efficient Systems for Foundation Models (ES-FoMo III)
Learning to Contextualize Web Pages for Enhanced Decision Making by LLM Agents
D. Lee‡, J. Lee‡, K. Kim, J. Tack, J. Shin, Y. W. Teh, K. Lee.
ICLR 2025
Optimized Feature Generation for Tabular Data via LLMs with Decision Tree Reasoning
J. Nam‡, K. Kim‡, S. Oh, J. Tack, J. Kim, J. Shin
NeurIPS 2024
Margin Matching Preference Optimization: Enhanced Model Alignment with Granular Feedback
K. Kim‡, A. Seo‡, H. Liu, J. Shin, K. Lee
EMNLP 2024 Findings
Confidence-aware Reward Optimization for Fine-tuning Text-to-Image Models
K. Kim, J. Jeong, M. An, M. Ghavamzadeh, K. Dvijotham, J. Shin, K. Lee
ICLR 2024
A Deep Reinforcement Learning Approach to Rare Event Estimation
A. Corso, K. Kim, S. Gupta, G. Gao, M. Kochenderfer
arXiv preprint arXiv:2211.12470
BEHAVIOR-1K: A Benchmark for Embodied AI with 1,000 Everyday Activities and Realistic Simulation
C. Li, C. Gokmen, G. Levine, R. Mart´ın-Mart´ın, S. Srivastava, C. Wang, J. Wong, R. Zhang, M. Lingelbach, J. Sun, M. Anvari, M. Hwang, M. Sharma, A. Aydin, D. Bansal, S. Hunter, K. Kim, A. Lou, C. Matthews, I. Villa-Renteria, J. Tang, C. Tang, F. Xia, S. Savarese, H. Gweon, K. Liu, J. Wu, F.-F. Li
CoRL 2022 (oral)
Using Machine Translation to Localize Task Oriented NLG Output.
S. Roy, C. Brunk, K. Kim, J. Zhao, M. Freitag, M. Kale, G. Bansal, S. Mudgal, C. Varano
arXiv preprint arXiv:2107.04512
Taskmaster-1: Toward a Realistic and Diverse Dialog Datase
B. Byrne, K. Krishnamoorthi, C. Sankar, A. Neelakantan, D. Duckworth, S. Yavuz, B. Goodrich, A. Dubey, A. Cedilnik, K. Kim
EMNLP-IJCNLP 2019
Self-Refining Language Model Anonymizers via Adversarial Distillation
K. Kim‡, H. Jeon‡, J. Shin
arXiv preprint arXiv:2506.01420
Personalized Language Models via Privacy-Preserving Evolutionary Model Merging
K. Kim, J. Shin, J. Kim
EMNLP 2025
Mamba Drafters for Speculative Decoding
D. Choi, S. Oh, S. Dingliwal, J. Tack, K. Kim, W. Song, S. Kim, I. Han, J. Shin, A. Galstyan, S. Katiyar, S. B. Bodapati
EMNLP 2025 Findings
ICML 2025 Workshop on Efficient Systems for Foundation Models (ES-FoMo III)
Learning to Contextualize Web Pages for Enhanced Decision Making by LLM Agents
D. Lee‡, J. Lee‡, K. Kim, J. Tack, J. Shin, Y. W. Teh, K. Lee.
ICLR 2025
Optimized Feature Generation for Tabular Data via LLMs with Decision Tree Reasoning
J. Nam‡, K. Kim‡, S. Oh, J. Tack, J. Kim, J. Shin
NeurIPS 2024
Margin Matching Preference Optimization: Enhanced Model Alignment with Granular Feedback
K. Kim‡, A. Seo‡, H. Liu, J. Shin, K. Lee
EMNLP 2024 Findings
Confidence-aware Reward Optimization for Fine-tuning Text-to-Image Models
K. Kim, J. Jeong, M. An, M. Ghavamzadeh, K. Dvijotham, J. Shin, K. Lee
ICLR 2024
Adaptive Algorithms for Efficient Risk Estimation of Black-Box Systems
K. Kim
MS thesis, Stanford University
A Deep Reinforcement Learning Approach to Rare Event Estimation
A. Corso, K. Kim, S. Gupta, G. Gao, M. Kochenderfer
arXiv preprint arXiv:2211.12470
BEHAVIOR-1K: A Benchmark for Embodied AI with 1,000 Everyday Activities and Realistic Simulation
C. Li, C. Gokmen, G. Levine, R. Mart´ın-Mart´ın, S. Srivastava, C. Wang, J. Wong, R. Zhang, M. Lingelbach, J. Sun, M. Anvari, M. Hwang, M. Sharma, A. Aydin, D. Bansal, S. Hunter, K. Kim, A. Lou, C. Matthews, I. Villa-Renteria, J. Tang, C. Tang, F. Xia, S. Savarese, H. Gweon, K. Liu, J. Wu, F.-F. Li
CoRL 2022 (oral)
Using Machine Translation to Localize Task Oriented NLG Output.
S. Roy, C. Brunk, K. Kim, J. Zhao, M. Freitag, M. Kale, G. Bansal, S. Mudgal, C. Varano
arXiv preprint arXiv:2107.04512
Taskmaster-1: Toward a Realistic and Diverse Dialog Datase
B. Byrne, K. Krishnamoorthi, C. Sankar, A. Neelakantan, D. Duckworth, S. Yavuz, B. Goodrich, A. Dubey, A. Cedilnik, K. Kim
EMNLP-IJCNLP 2019
Finding Overlapping Communities From Subspaces
D. Bindel, P. Chew, J. Hopcroft, K. Kim, C. Ponce
Technical Report 2011
Full Resume in PDF.