I am a second-year Ph.D. student at the Algorithmic Intelligence Lab at KAIST AI. My research focuses on developing efficient and safe methods for enhancing, aligning, and personalizing generative models, with an emphasis on large language models. I have broad research interests, including generative models, reinforcement learning from human feedback, AI safety, and nature-inspired intelligence, among others. I always strive to more deeply understand the fundamental (mathematical) principles behind everything I work on, though it's a lot challenging in general :-)
Previously, I worked as a senior software engineer at Google, developing machine learning methods to localize Google Assistant for low-resource languages. I also worked in Display Ads, building the ads backend system and enhancing auction algorithms for improved user experience. I received an MS in computer science from Stanford University and a BS in computer science with a minor in applied mathematics from Cornell University.
Most recent publications on Google Scholar.
‡ indicates equal contribution.
Optimized Feature Generation for Tabular Data via LLMs with Decision Tree Reasoning
J. Nam‡, K. Kim‡, S. Oh, J. Tack, J. Kim, J. Shin
NeurIPS'24: Advances in Neural Information Processing Systems
Margin Matching Preference Optimization: Enhanced Model Alignment with Granular Feedback
K. Kim‡, A. Seo‡, H. Liu, J. Shin, K. Lee
EMNLP'24 Findings: Findings of the Association for Computational Linguistics: EMNLP 2024
Confidence-aware Reward Optimization for Fine-tuning Text-to-Image Models
K. Kim, J. Jeong, M. An, M. Ghavamzadeh, K. Dvijotham, J. Shin, K. Lee
ICLR'24: International Conference on Learning Representations
Adaptive Algorithms for Efficient Risk Estimation of Black-Box Systems
K. Kim
MS thesis, Stanford University
A Deep Reinforcement Learning Approach to Rare Event Estimation
A. Corso, K. Kim, S. Gupta, G. Gao, M. Kochenderfer
arXiv preprint arXiv:2211.12470
BEHAVIOR-1K: A Benchmark for Embodied AI with 1,000 Everyday Activities and Realistic Simulation
C. Li, C. Gokmen, G. Levine, R. Mart´ın-Mart´ın, S. Srivastava, C. Wang, J. Wong, R. Zhang, M. Lingelbach, J. Sun, M. Anvari, M. Hwang, M. Sharma, A. Aydin, D. Bansal, S. Hunter, K. Kim, A. Lou, C. Matthews, I. Villa-Renteria, J. Tang, C. Tang, F. Xia, S. Savarese, H. Gweon, K. Liu, J. Wu, F.-F. Li
CoRL'22 (oral): Conference on Robot Learning
Using Machine Translation to Localize Task Oriented NLG Output.
S. Roy, C. Brunk, K. Kim, J. Zhao, M. Freitag, M. Kale, G. Bansal, S. Mudgal, C. Varano
arXiv preprint arXiv:2107.04512
Taskmaster-1: Toward a Realistic and Diverse Dialog Datase
B. Byrne, K. Krishnamoorthi, C. Sankar, A. Neelakantan, D. Duckworth, S. Yavuz, B. Goodrich, A. Dubey, A. Cedilnik, K. Kim
EMNLP-IJCNLP'19: 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing
Finding Overlapping Communities From Subspaces
D. Bindel, P. Chew, J. Hopcroft, K. Kim, C. Ponce
Technical Report'11
Optimized Feature Generation for Tabular Data via LLMs with Decision Tree Reasoning
J. Nam‡, K. Kim‡, S. Oh, J. Tack, J. Kim, J. Shin
NeurIPS'24: Advances in Neural Information Processing Systems
Margin Matching Preference Optimization: Enhanced Model Alignment with Granular Feedback
K. Kim‡, A. Seo‡, H. Liu, J. Shin, K. Lee
EMNLP'24 Findings: Findings of the Association for Computational Linguistics: EMNLP 2024
Confidence-aware Reward Optimization for Fine-tuning Text-to-Image Models
K. Kim, J. Jeong, M. An, M. Ghavamzadeh, K. Dvijotham, J. Shin, K. Lee
ICLR'24: International Conference on Learning Representations
Adaptive Algorithms for Efficient Risk Estimation of Black-Box Systems
K. Kim
MS thesis, Stanford University
A Deep Reinforcement Learning Approach to Rare Event Estimation
A. Corso, K. Kim, S. Gupta, G. Gao, M. Kochenderfer
arXiv preprint arXiv:2211.12470
BEHAVIOR-1K: A Benchmark for Embodied AI with 1,000 Everyday Activities and Realistic Simulation
C. Li, C. Gokmen, G. Levine, R. Mart´ın-Mart´ın, S. Srivastava, C. Wang, J. Wong, R. Zhang, M. Lingelbach, J. Sun, M. Anvari, M. Hwang, M. Sharma, A. Aydin, D. Bansal, S. Hunter, K. Kim, A. Lou, C. Matthews, I. Villa-Renteria, J. Tang, C. Tang, F. Xia, S. Savarese, H. Gweon, K. Liu, J. Wu, F.-F. Li
CoRL'22 (oral): Conference on Robot Learning
Using Machine Translation to Localize Task Oriented NLG Output.
S. Roy, C. Brunk, K. Kim, J. Zhao, M. Freitag, M. Kale, G. Bansal, S. Mudgal, C. Varano
arXiv preprint arXiv:2107.04512
Taskmaster-1: Toward a Realistic and Diverse Dialog Datase
B. Byrne, K. Krishnamoorthi, C. Sankar, A. Neelakantan, D. Duckworth, S. Yavuz, B. Goodrich, A. Dubey, A. Cedilnik, K. Kim
EMNLP-IJCNLP'19: 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing
Finding Overlapping Communities From Subspaces
D. Bindel, P. Chew, J. Hopcroft, K. Kim, C. Ponce
Technical Report'11
Full Resume in PDF.