Kyuyoung Kim

Ph.D. student, KAIST AI

kykim [AT] cs.stanford.edu

Bio

I am a second-year Ph.D. student at the Algorithmic Intelligence Lab at KAIST AI. My research focuses on developing efficient and safe methods for enhancing, aligning, and personalizing generative models, with an emphasis on large language models. I have broad research interests, including generative models, reinforcement learning from human feedback, AI safety, and nature-inspired intelligence, among others. I always strive to more deeply understand the fundamental (mathematical) principles behind everything I work on, though it's a lot challenging in general :-)

Previously, I worked as a senior software engineer at Google, developing machine learning methods to localize Google Assistant for low-resource languages. I also worked in Display Ads, building the ads backend system and enhancing auction algorithms for improved user experience. I received an MS in computer science from Stanford University and a BS in computer science with a minor in applied mathematics from Cornell University.

Publications

Most recent publications on Google Scholar.
indicates equal contribution.

Optimized Feature Generation for Tabular Data via LLMs with Decision Tree Reasoning

J. Nam, K. Kim, S. Oh, J. Tack, J. Kim, J. Shin

NeurIPS'24: Advances in Neural Information Processing Systems

Margin Matching Preference Optimization: Enhanced Model Alignment with Granular Feedback

K. Kim, A. Seo, H. Liu, J. Shin, K. Lee

EMNLP'24 Findings: Findings of the Association for Computational Linguistics: EMNLP 2024

Confidence-aware Reward Optimization for Fine-tuning Text-to-Image Models

K. Kim, J. Jeong, M. An, M. Ghavamzadeh, K. Dvijotham, J. Shin, K. Lee

ICLR'24: International Conference on Learning Representations

Adaptive Algorithms for Efficient Risk Estimation of Black-Box Systems

K. Kim

MS thesis, Stanford University

A Deep Reinforcement Learning Approach to Rare Event Estimation

A. Corso, K. Kim, S. Gupta, G. Gao, M. Kochenderfer

arXiv preprint arXiv:2211.12470

BEHAVIOR-1K: A Benchmark for Embodied AI with 1,000 Everyday Activities and Realistic Simulation

C. Li, C. Gokmen, G. Levine, R. Mart´ın-Mart´ın, S. Srivastava, C. Wang, J. Wong, R. Zhang, M. Lingelbach, J. Sun, M. Anvari, M. Hwang, M. Sharma, A. Aydin, D. Bansal, S. Hunter, K. Kim, A. Lou, C. Matthews, I. Villa-Renteria, J. Tang, C. Tang, F. Xia, S. Savarese, H. Gweon, K. Liu, J. Wu, F.-F. Li

CoRL'22 (oral): Conference on Robot Learning

Using Machine Translation to Localize Task Oriented NLG Output.

S. Roy, C. Brunk, K. Kim, J. Zhao, M. Freitag, M. Kale, G. Bansal, S. Mudgal, C. Varano

arXiv preprint arXiv:2107.04512

Taskmaster-1: Toward a Realistic and Diverse Dialog Datase

B. Byrne, K. Krishnamoorthi, C. Sankar, A. Neelakantan, D. Duckworth, S. Yavuz, B. Goodrich, A. Dubey, A. Cedilnik, K. Kim

EMNLP-IJCNLP'19: 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing

Finding Overlapping Communities From Subspaces

D. Bindel, P. Chew, J. Hopcroft, K. Kim, C. Ponce

Technical Report'11

Optimized Feature Generation for Tabular Data via LLMs with Decision Tree Reasoning

J. Nam, K. Kim, S. Oh, J. Tack, J. Kim, J. Shin

NeurIPS'24: Advances in Neural Information Processing Systems

Margin Matching Preference Optimization: Enhanced Model Alignment with Granular Feedback

K. Kim, A. Seo, H. Liu, J. Shin, K. Lee

EMNLP'24 Findings: Findings of the Association for Computational Linguistics: EMNLP 2024

Confidence-aware Reward Optimization for Fine-tuning Text-to-Image Models

K. Kim, J. Jeong, M. An, M. Ghavamzadeh, K. Dvijotham, J. Shin, K. Lee

ICLR'24: International Conference on Learning Representations

Adaptive Algorithms for Efficient Risk Estimation of Black-Box Systems

K. Kim

MS thesis, Stanford University

A Deep Reinforcement Learning Approach to Rare Event Estimation

A. Corso, K. Kim, S. Gupta, G. Gao, M. Kochenderfer

arXiv preprint arXiv:2211.12470

BEHAVIOR-1K: A Benchmark for Embodied AI with 1,000 Everyday Activities and Realistic Simulation

C. Li, C. Gokmen, G. Levine, R. Mart´ın-Mart´ın, S. Srivastava, C. Wang, J. Wong, R. Zhang, M. Lingelbach, J. Sun, M. Anvari, M. Hwang, M. Sharma, A. Aydin, D. Bansal, S. Hunter, K. Kim, A. Lou, C. Matthews, I. Villa-Renteria, J. Tang, C. Tang, F. Xia, S. Savarese, H. Gweon, K. Liu, J. Wu, F.-F. Li

CoRL'22 (oral): Conference on Robot Learning

Using Machine Translation to Localize Task Oriented NLG Output.

S. Roy, C. Brunk, K. Kim, J. Zhao, M. Freitag, M. Kale, G. Bansal, S. Mudgal, C. Varano

arXiv preprint arXiv:2107.04512

Taskmaster-1: Toward a Realistic and Diverse Dialog Datase

B. Byrne, K. Krishnamoorthi, C. Sankar, A. Neelakantan, D. Duckworth, S. Yavuz, B. Goodrich, A. Dubey, A. Cedilnik, K. Kim

EMNLP-IJCNLP'19: 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing

Finding Overlapping Communities From Subspaces

D. Bindel, P. Chew, J. Hopcroft, K. Kim, C. Ponce

Technical Report'11

Vitæ

Full Resume in PDF.

Website Design

This website is based on this wonderful GitHub repo.